• Title/Summary/Keyword: Vibration protection

Search Result 139, Processing Time 0.021 seconds

Numerical Study on Ground Vibration Reduction Performance of Concrete Drainage Protection Facility (콘크리트 배수관로 보호구의 지반진동 저감 성능에 관한 수치해석적 연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Baluch, Khaqan;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.12-21
    • /
    • 2021
  • In this study, a series of FEM numerical analyses was conducted to compare the resistance performance of concrete drainage protection facility to blast vibration. Two different types of ㅁ-shaped protection facility, which are suggested in the study, were compared to the traditional ㄷ-shaped one. In the analyses, the vibration resistances of the three protection facilities were evaluated under the varying conditions of the standoff distance from the explosion and charge weight per delay. As a result, it was found that the two proposed types of drainage protection facilities are superior to the traditional one in the vibration reduction performance.

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

A Study on the Vibration Protection Efficiency of EPS Wall Barrier with Centrifuge Model Tests (원심모형실험을 통한 EPS 차단벽의 방진효과에 관한 연구)

  • Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.101-110
    • /
    • 2006
  • In general, environment-induced vibration propagates from the center of source to the destination through ground. In fact, the mechanism of wave propagation is highly dependent on the ground conditions, and various methods to protect structures from such a ground vibration have been proposed. The method of wall barrier has been frequently used to cut off ground vibration effectively. However, the capability of wall barrier may be affected by various factors like constituent material of it. Therefore, it is important to figure out appropriate material for the wall barrier. This study is focused on the effect of EPS on the vibration protection. Centrifuge model tests were performed. Two types of models such as a cylindrical and a rectangular wall were used. For the cylindrical type of wall, installation depth was changed, while the length of the wall varied fur the rectangular type to figure out the capability of vibration protection.

Acoustic test of the payload fairing of Korea satellite launch vehicle (소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험)

  • Park, S.H.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF

A Study on the Ground Vibration of the Front and the Back Direction of the Free Face in the Bench Blasting (계단식 발파에 있어서 자유면 전.후방의 지반진동에 관한 연구)

  • 기경철;김일중
    • Explosives and Blasting
    • /
    • v.20 no.2
    • /
    • pp.21-31
    • /
    • 2002
  • We did bench blasting upon the natural rock which it's uniaxial compressive strength was about $1,420~1,476kgf/\textrm{cm}^2$. This is the results we inferred after measuring, analyzing the ground vibration velocity of the front and back direction from the free face of the bench blasting. We have to induce the square and cube root scaled equation and the general equation to guarantee confidence upon the data when analyzing the measurement data of the test blasting. The variable distance is in reverse proportion to the permitted ground vibration velocity. The shorter is the exploding point to a protection structure, the bigger is the reflection that the direction of the free face experts the ground vibration velocity, The ground vibration velocity front of the free face tends become reduced about 38~46% compare with back of the free face in the range that the permitted ground vibration velocity is 2.0~5.0mm/sec. In case of 2.0mm/sec, when a protection structure is within about 95m, the max. allowable charge weight per delay on positing front of the free face can be more used about 2.61 times than that on positing back of the free face, in case of 3.0mm/sec within about 78m more about 2.38 times, in case of 5.0mm/sec within 60m more about 2.10 times. In case of 2.0~5.0mm/sec when a protection structure is within about 200m front from the free face, the max. allowable charge weight per delay can become about 1.52 times than the case on back to the free face.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.