• 제목/요약/키워드: Vibration path

검색결과 382건 처리시간 0.024초

유량측정을 위한 초음파 전파경로 비교 (Comparison of Ultrasonic Paths for Flow Rate Measurement)

  • 김주완;박춘광;김진오;박두식
    • 한국소음진동공학회논문집
    • /
    • 제25권7호
    • /
    • pp.455-461
    • /
    • 2015
  • The paper deals with the accuracy comparison between two kinds of ultrasonic paths for flow rate measurement. In the Z-path, two transducers are installed on the opposite sides of each other on a pipe, and the ultrasonic waves generated at one transducer propagate to arrive at the other one only by refraction. In the V-path, two transducers are installed on one side of a pipe, and the ultrasonic waves reflected at the inner wall of the pipe are received. Transit times were confirmed to identify the propagation paths by comparing the theoretically calculated results and measured ones. The flow rate measurements with two kinds of ultrasonic paths appeared very similar. It would be possible to select either of the paths by considering the advantages and disadvantages.

스마트 폼을 이용한 덕트 내 넓은 영역에서의 소음 제어 및 상쇄 경로 최적화 (Active noise control in the global region of a duct using smart foam and FIR filter optimization of cancellation Path)

  • 한제헌;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.525-529
    • /
    • 2002
  • ANC technic can overcome the limited performance of passive noise control at the low frequency range. But it has the local quiet control region in general. In this paper, it is discussed that the global noise control in a circular duct using a ring type smart foam and a porous material. LMS algorithm and RLS algorithm are used to find optimal orders of cancellation path. Experiments are performed to compare the efficiency of RLS algorithm with that of LMS algorithm.

  • PDF

단순화된 타이어 진동전달 모델의 전달경로분석법을 이용한 로드노이즈 예측기술 개발 (Road Noise Estimation Based on Transfer Path Analysis Using a Simplified Tire Vibration Transfer Model)

  • 신태진;박종호;이상권;신광수;황성욱
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.176-184
    • /
    • 2013
  • Quantification of road noise is a challenging issue in the development of tire noise since its transfer paths are complicated. In this paper, a simplified model to estimate the road noise is developed. Transfer path of the model is from wheel to interior. The method uses the wheel excitation force estimated throughout inverse method. In inversion procedure, the Tikhonov regularization method is used to reduce the inversion error. To estimate the wheel excitation force, the vibration of knuckle is measured and transfer function between knuckle and wheel center is also measured. The wheel excitation force is estimated by using the measured knuckle vibration and the inversed transfer function. Finally interior noise due to wheel force is estimated by multiplying wheel excitation force in the vibro-acoustic transfer function. This vibro-acoustic transfer function is obtained throughout measurement. The proposed method is validated by using cleat excitation method. Finally, it is applied to the estimation of interior noise of the vehicle with different types of tires during driving test.

전단벽식 건축구조물 수직진동의 수평방향 전달특성에 관한 실험연구 (An Experimental Study on the Vertical Vibration Transfer in Horizontal Way according to Shear Wall Building Structures due to Exciting Vibration Forces)

  • 전호민
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.270-282
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions to near-rooms on the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the impact (heel-drop and hammer) excitation experiments were conducted several times on two building structure. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vertical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs, and are effected the shear wall on the Path of the vibration transfer.

승용차의 도로면 발생 소음 개선을 위한 시험 및 평가 연구 (Integrated Test and Evaluation for Improvement of Vehicle Road Noise)

  • 고강호;허승진;국형석
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.327-333
    • /
    • 2003
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual leading and find noise sources very easily. Finally, the transfer path analysis is used to Identify noise Paths through the chassis system. The objectives and the procedures of the tests are described in this Paper Also, the guideline for efficient road noise evaluation test can be found.

테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구 (Cabin Noise Reduction of wheel Loader through the Shape Optimization of Tail-Pipe)

  • 고경은;주원호;김동해;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.686-689
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

  • PDF

테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구 (Cabin Noise Reduction of Wheel Loader through the Shape Optimization of Tail-Pipe)

  • 고경은;주원호;김동해;배종국
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1238-1243
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room, however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

승용차량용 연료탱크 슬로싱 현상에 대한 실험적 고찰 및 평가 방법에 대한 연구 (Experimental Study and Evaluation Method for Sloshing Noise of Fuel Tank on Passenger Vehicle)

  • 안세진;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.444-451
    • /
    • 2014
  • The signal patterns of slosh noise produced by the fuel tank of a passenger vehicle are characterized by analyzing vehicle interior noise, fuel tank vibration, and near-field noise radiated from the fuel tank. This paper also shows the noise transfer path analysis results performed from the fuel tank to the vehicle inside. On top of them, physical index is described, demonstrating a good correlation with subjective feeling of slosh noise. It is essential to identify the main noise transfer paths for redesigning of the fuel tank system aiming at reducing slosh noise and also helpful to apply physical index in evaluating and reducing this noise. It is found that structure-borne path is the main root of slosh noise and a value reveals a good correlation with subjective feeling.

건설기계 엔진마운트 최적설계에 관한 실용적 연구 (A Practical Research of Engine Mount Optimization in a Construction Equipment)

  • 신명호;주경훈;김우형;김인동;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF

RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교 (Characteristics of Vertical Vibration Transfer according to RC Structure Systems)

  • 전호민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF