• Title/Summary/Keyword: Vibration path

Search Result 382, Processing Time 0.029 seconds

On the Compensation of Camera Hand Shaking Using Friction Driven Piezoelectric Actuator (마찰 구동형 압전 작동기를 이용한 카메라 손떨림 진동보상 기법 연구)

  • Cho, Myungsin;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.23-30
    • /
    • 2015
  • The focal plane image stabilization for a camera is one of the most effective method that can increases the digital camera's image quality by compensating the vibration disturbance. The optical image stabilization can be implemented by making the focal plane to trace the path of incident light. To control the position of focal plane motion compensating stage precisely, a nonlinear control algorithm has been applied by considering coulomb friction which is nonlinear behavior of the compensator system. In our study, we have analyzed the hand shaking vibration using the gyro sensor, and made a mathematical model of compensating stage containing optical sensor and piezo-actuator. Then the nonlinear control algorithm has been designed and its performance has been verified by experiment. In this study, a friction driven peizo-electric actuator with $1{\mu}m$ resolution and 10mm/s speed has been used for stage movement.

Development of Evaluation Technique of Mobility and Navigation Performance for Personal Robots (퍼스널 로봇을 위한 운동과 이동 성능평가 기술의 개발)

  • Ahn Chang-hyun;Kim Jin-Oh;Yi Keon Young;Lee Ho Gil;Kim Kyu-ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.85-92
    • /
    • 2003
  • In this paper, we propose a method to evaluate performances of mobile personal robots. A set of performance measures is proposed and the corresponding evaluation methods are developed. Different from industrial manipulators, personal robots need to be evaluated with its mobility, navigation, task and intelligent performance in environments where human beings exist. The proposed performance measures are composed of measures for mobility including vibration, repeatability, path accuracy and so on, as well as measures for navigation performance including wall following, overcoming doorsill, obstacle avoidance and localization. But task and intelligent behavior performances such as cleaning capability and high-level decision-making are not considered in this paper. To measure the proposed performances through a series of tests, we designed a test environment and developed measurement systems including a 3D Laser tracking system, a vision monitoring system and a vibration measurement system. We measured the proposed performances with a mobile robot to show the result as an example. The developed systems, which are installed at Korea Agency for Technology and Standards, are going to be used for many robot companies in Korea.

Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway (노면 요철을 고려한 AGT 차량의 동적 응답 해석)

  • Song, Jae-Pil;Kim, Chul-Woo;Kim, Ki-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures (강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용)

  • Park, Seung-Hee;Lee, Jong-Jae;Yun, Chung-Bang;Roh, Yong-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.625-632
    • /
    • 2004
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

  • PDF

Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4030-4048
    • /
    • 2022
  • In this study, road transportation tests were conducted with surrogate fuel assemblies under normal conditions of transport to evaluate the vibration and shock load characteristics of spent nuclear fuel (SNF). The overall test data analysis was conducted based on the measured acceleration and strain data obtained from the speed bump, lane-change, deceleration, obstacle avoidance, and circular tests. Furthermore, representative shock response spectrums and power spectral densities of each test mode were acquired. Amplification or attenuation characteristics were investigated according to the load transfer path. The load attenuated significantly as it transferred from the trailer to the cask. By contrast, the load amplified as it transferred from the cask to the surrogate SNF assembly. The fuel loading location on the cask disk assembly did not exhibit a significant influence on the strain measured from the fuel rods. The principal strain was in the vertical direction, and relatively large strain values were obtained in spans with large spacing between spacer grids. The influence of the lateral location of fuel rods was also investigated. The fuel rods located at the side exhibited relatively large strain values than those located at the center. Based on the strain data obtained from the test results, a hypothetical road transportation scenario was established. A fatigue evaluation of the SNF rod was performed based on this scenario. The evaluation results indicate that no fatigue damage occurred on the fuel rods.

Optical Design of Satellite Camera for Lens Shifting Image Stabilization (렌즈 시프팅 영상 안정화 기법 적용을 위한 위성카메라의 광학설계)

  • Tak, Jun-Mo;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, an optical system for a lens-shifting method that compensates for microvibration of a high-agility small satellite has been designed. The lens-shifting method is an image-stabilization technique that can be applied to compensate for the optical path disturbed by microvibration. The target optical system is designed by using Code-V, a commercial optical-design code. The specifications for real satellite cameras have established the requirements for optical design. The Ray aberration curve, spot diagram, and MTF curve were carried out to verify if the designed optical system meets the requirements or not. The designed Schmidt-Cassegrain optical system with field flattener and a vibration-reduction lens has been verified to meet the optical requirements, 33% of MTF at Nyquist frequency, GSD of 2.87 m, and vibration coefficient of 0.95~1.0.

A Comparative Study on the Structural Characteristics of the Novel Two-Phase 8/6 Switched Reluctance Machine (새로운 2상 8/6 SRM의 구조적 특성에 관한 비교 연구)

  • Lee, Cheewoo;Hwang, Hongsik;Oh, Seok-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • This study presents a novel two­phase eight stator poles and six rotor poles (8/6) switched reluctance machine (SRM) that can compensate for the vibration and noise problems of two­phase 6/3 SRM and compare the characteristics of two SRMs. In the case of two­phase 6/3 SRM, the short flux path and the flux direction inside the stator are not reversed, so they have high efficiency characteristics. However, the use of three rotor poles causes problems of vibration and noise because the radial force applied to the rotor poles is not balance. The proposed two­phase 8/6 SRM has advantages of 6/3 SRM such as the flux­reversal­free stator and it can improve vibration and noise by using six rotor poles due to balanced radial force acting on the rotor poles. In order to make a reasonable comparison between two SRMs, the electromagnetic field structure of 8/6 SRM is designed to have equivalent torque characteristic to 6/3 SRM and then the copper loss and core loss are compared and analyzed. Finally, we compare the effieicney of two SRMs using finite element analysis and compare the distribution of radial force acting on the rotor poles based on Maxwell's stress method.

A Study on the Improvement of Brake Judder in Korean Light Tactical Vehicles (한국형 전술차량 제동 시 차체 떨림 개선에 관한 연구)

  • Kim, Sung-Gon;Kim, Seon-Jin;Shin, Cheol-Ho;Yun, Seong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.432-439
    • /
    • 2020
  • Brake judder has been identified in some operating military units of Korean Light Tactical Vehicles(KLTV) with In-board brake systems to improve braking performance. Severe vibration generated while driving the vehicle may reduce the KLTV's driving stability and further lead to accidents. For the prevention of this, this study analyzes the root cause through the failure analysis on the vehicles with the brake judder identified. Furthermore, the improvement factor was derived by identifying a vibration transmission path by analyzing the vibration transmission mechanism. The study analysis confirmed that the vibration of the frame during braking in the tactical vehicle is a cold judder phenomenon, which is caused by an increase in disk thickness variation due to rust and foreign substances under excessive brake disc's run-out. In addition, it was confirmed that such vibration can be reduced by improving the mounting structure. So, an improvement method for each factor was suggested and its effectiveness was verified by comparison test. Finally, it is expected that the improvement plans derived through this study can be used in the development of a next military vehicle.

Active Noise Control in a Duct Using Smart Foam (스마트 폼을 이용한 덕트 내부의 능동 소음 제어)

  • 김표재;강연준;조영만
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.422-427
    • /
    • 2001
  • In this paper is presented passive-active noise control in a duct using a ring-type smart foam. The ring-type smart foam is comprised of a PVDF film embedded in elastic noise control foam of lining shape. The embeddedPVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. By implementing an adaptive filtered-x LMS algorithm, experiments are performed to reduce both tonal and broadband noise in a duct with one end closed and the other end open.

  • PDF

Development of an Array of EMAT for a Long-Range Inspection of a Pipe Using a Torsional Guided Wave

  • Cheong, Yong-Moo;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • A torsional guided wave mode in a tubular structure has many advantages in obtaining a higher sensitivity and lower attenuation for a defect, because it shows no dispersion characteristics and no radial displacement for a tubular structure. Many attempts have been made to excite and receive torsional guided waves by conventional piezoelectric transducers, but only a few examples are used during a practical field inspection. In this study, an array of electromagnetic acoustic transducers (EMATs) were for an excitation and reception of the torsional guided waves in a pipe was designed and fabricated. The signal patterns were analyzed based on various beam path length. The feasibility of detecting the defects was investigated through a series of experiments with artificial notches on a pipe.