• Title/Summary/Keyword: Vibration of Rotating Body

Search Result 53, Processing Time 0.021 seconds

Dynamic Behavior Analysis of a Reciprocating Compressor Body with Variable Rotating Speed (가변속 왕복동형 압축기 본체의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.374-383
    • /
    • 2001
  • A reciprocating compressor unit with variable rotating speed driven by BLDC motor is mounted Inside hermetic chamber on an internal suspension composed of 4 roil springs and a discharge pipe. A method for predicting the dynamic behavior of compressor body is required for a reduction of transmitted vibrations. The mechanical characteristics of spring and discharge pipe stiffness properties have been obtained from experimental tests and mass moment of inertia of the compressor body iron CAD. To confirm the vibration model for the compressor body, free vibration analyses are performed with theoretical and experimental methods. results for analytical investigations on the dynamic behavior of the compressor body and the transmitted forces to the hermetic chamber through the suspension elements are Presented.

  • PDF

Vibration Prediction of Helicopter Airframe (헬리콥터 동체의 진동 예측)

  • Yun, Chul Yong;Kim, Do-Hyung;Kang, Hee Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis (유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석)

  • Jeong, Myeong-Su;Jang, Geon-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.

Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform (Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1024-1032
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform (Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.400-406
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

  • PDF

Duct Effects on rotor noise in radiation (덕트가 로터 소음 방사에 미치는 영향)

  • Choi, Han-Lim;Chung, Ki-Hoon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.938-941
    • /
    • 2004
  • Sound generation and radiation from the duct-rotor system are calculated numerically. The wake geometries of a two-bladed rotor are calculated by using a time-marching fiee-wake method without a non-physical model of the far wake. Acoustic free field due to a rotating rotor is obtained by Lowson's equation. Using Kirchhoff source, rotating sources are modeled as stationary ones and can be inserted in the thin body boundary element method. The Kirchhoff source is validated through calculation of acoustic pressure due to a rotating point force. The thin body boundary element method (thin body BEM) is validated through calculation of acoustic radiation of ducted dipole. Using Kirchhoff source and thin body BEM, acoustic radiation of a ducted rotating source is calculated. Acoustic shielding is observed by inserting a duct and shows different phenomena at each major frequency. Acoustic radiation of a real duct-rotor system is also calculated using this method and the ducted acoustic field is significantly different from rotor only.

  • PDF

Computer Simulation for Dynamic Analysis of Rigid Body Suspension System for Waching Machine (세탁기용 강제 현가시스템의 동특성 해석을 위한 전산 시뮬레이션)

  • 정경렬;이종범;임무생;윤종만
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1993
  • In this study, we identify the structural dynamic characteristics of the rigid body suspension system of waching machine containing rotating system, and consider the methods for the reduction of noise and vibration due to the structural problems. The structural dynamic characteristics of the suspension system have been studied by the computer simulation, in which the commercial software package, "DYMES(Dynamics of Mechanical System)" is used. The behaviour of the supporter by the rotating system has been parametrically studied by computer simulation, and the force and torque which are transferred to the fixed body through the suspension bar also has been calculated. The possibility to decide the position and the stability of the rigid body suspension system for waching machine is demonstrated based on various simulation results.n results.

  • PDF

Dynamic Analysis of an Impulsively Forced Rotating Cantilever Beam (충격력을 받는 회전하는 외팔 보의 동적 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the dynamic analysis of an impulsively forced rotating cantilever beam with rigid body motion. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling with the Rayleigh-Ritz assumed mode methods. The stiffness variation effect due to the rigid body motion of the beam is considered in this study Also, the effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical works.

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Coupled Vibration of Lateral and Torsional Vibrations in a Rotating Shaft Driven through a Universal Joint - Derivation of Equations of Motion and Stability Analysis - (유니버셜 조인트에 의해 구동되는 회전축의 횡진동과 비틀림진동의 연성진동 - 운동방정식의 유도 및 안정성해석 -)

  • 김정렬;전승환;이돈출
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.461-465
    • /
    • 1999
  • This paper presents theoretical analyses for unstable vibrations caused by the couple of bending and torsion in a rotating shaft driven through a universal joint. A driving shaft is assumed to be rigid and to rotate with a constant angular velocity. The driven shaft system consists of a flexible shaft with a circular section and a symmetrical rotor attached at a point between the shaft ends. Equations of motion derived hold with an accuracy of the second order of shaft deformations, and are analyzed by the asymptotic method. The vibrations become unstable when the driving shaft rotates with the angular velocity to be approximately equal to half of the sum of the natural frequencies for whirling and torsional vibrations.

  • PDF