• Title/Summary/Keyword: Vibration modes of stator

Search Result 24, Processing Time 0.018 seconds

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures in a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • Han, Jaehyuk;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.251-258
    • /
    • 2005
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings (HDB) in an HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Reynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigen value problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

The Electro-Mechanical Properties of Disk-Type Stator for Ultrasonic Motor (초음파 모터용 디스크형 고정자의 전기기계적 특성)

  • Lee, J.S.;Kim, B.W.;Lee, S.H.;Shin, S.I.;Nam, K.D.;Oh, H.K.;Jang, Y.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.339-340
    • /
    • 2006
  • In this paper, disk-type ultrasonic motor using radial and bending vibration modes is newly designed and fabricated to measure its characteristics. As the diameter of elastic body increases, the resonant frequency decreases and its resonant frequency is about 92kHz when the physical dimensions of piezoelectric ceramic and elastic body are 28mm of diameter and 2mm of thickness, and 32mm of diameter and 2mm of thickness, respectively. When the applied voltage is 20Vpp. its speed and torque are 200rpm and 1N, respectively.

  • PDF

High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence (유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soogab;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.