• 제목/요약/키워드: Vibration loads

검색결과 844건 처리시간 0.026초

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.

라멘조 건축구조물의 수직진동 전달특성에 관한 실험연구 (An Experimental Study on the Vertical Vibration Transfer according to Rahmen Building Structures due to Train Loads)

  • 전호민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.469-475
    • /
    • 2004
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the dynamic characteristics of vertical vibration transfer from lower stories to upper ones on the Rahmen building structures due to traffic loads. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structures. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the type of trains.

  • PDF

Effect of pre-magneto-electro-mechanical loads and initial curvature on the free vibration characteristics of size-dependent beam

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.37-43
    • /
    • 2019
  • This paper studies application of modified couple stress theory and first order shear deformation theory to magneto-electro-mechanical vibration analysis of three-layered size-dependent curved beam. The curved beam is resting on Pasternak's foundation and is subjected to mechanical, magnetic and electrical loads. Size dependency is accounted by employing a small scale parameter based on modified couple stress theory. The magneto-electro-mechanical preloads are accounted in governing equations to obtain natural frequencies in terms of initial magneto-electro-mechanical loads. The analytical approach is applied to investigate the effect of some important parameters such as opening angle, initial electric and magnetic potentials, small scale parameter, and some geometric dimensionless parameters and direct and shear parameters of elastic foundation on the magneto-electro-elastic vibration responses.

KSR-III 로켓의 추진기관에 의한 음향 하중 예측 및 측정 (Prediction and Measurement of Acoustic Loads Generated by KSR-III Propulsion System)

  • 박순홍;전영두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.853-856
    • /
    • 2002
  • Rocket propulsion systems generate very high-level noise (acoustic loads), which is due to supersonic jet emitted by rocket engine. In practice, the sound power level of rocket propulsion systems is over 180 dB. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunction of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. A popular prediction method is based on NASA SP-8072. This method was used to predict the acoustic loads of KSR-III rocket. Measurement of acoustic loads by KSR-III propulsion system was performed in the stage qualification test. The predicted results were compared with the measured ones.

  • PDF

Preflex 철도교량의 운행열차하중에 대한 동적응답 분석 (Experimental Analysis of A Preflex Railway Bridge Under Random Train Loads)

  • 오지택;김현민;최은수;김주우
    • 한국공간구조학회논문집
    • /
    • 제5권1호
    • /
    • pp.65-71
    • /
    • 2005
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF

항공기 날개 돌풍 응답해석 및 완화기법 (Gust Response Analysis and Alleviation Method for Aircraft Wing)

  • 이상욱;김태욱;황인희;하철근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.452-456
    • /
    • 2004
  • A study on gust loads alleviation using aircraft control surface was performed. Aeroservoelastic model including control surface controller was formulated and validated by comparing the results of continuous turbulence response analysis with those of MSC/NASTRAN. Optimal control with output feedback was adopted for designing the control surface controller, and the effects of gust loads alleviation was validated by performing the numerical simulation for the controller designed.

  • PDF

Preflex 철도교량의 실 운행열차하중에 대한 동적응답 분석 (A Dynamic Response Analysis about Real Train Loads of the Preflex Railway Bridge)

  • 오지택;김현민;최은수;이태균
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1021-1027
    • /
    • 2004
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF

사하중에 의한 정적 처짐을 고려한 보의 자유진동 (Free Vibrations of Beams with Static Deflections due to Dead Loads)

  • 이병구;박광규;오상진;모정만
    • 소음진동
    • /
    • 제4권4호
    • /
    • pp.451-457
    • /
    • 1994
  • A numerical method is presented to obtain natural frequencies and mode shapes of uniform elastic beams with static deflections due to dead loads. The differential equation governing the free vibration of beam taken into account the static deflection due to deal loads is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged end constraints are applied in the numerical examples. As the numerical results, the lowest three nondimensional frequency parameters are reported as functions of nondimensional system parameters; the load parameters, and the slenderness rations. And some typical mode shapes of free vibrations are also presented in figures.

  • PDF

Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing

  • Waimer, Steffen;Manzato, Simone;Peeters, Bart;Wagner, Mark;Guillaume, Patrick
    • Advances in aircraft and spacecraft science
    • /
    • 제5권2호
    • /
    • pp.205-223
    • /
    • 2018
  • During launch a spacecraft is subjected to a variety of dynamical loads transmitted through the launcher to spacecraft interface or air-born transmission excitations in the acoustic pressure field inside the fairing. As a result, spacecraft are tested on ground to ensure and demonstrate the global integrity of the structure against these loads, to screen the flight hardware for quality of workmanship and to validate mathematical models. This paper addresses the numerical modelling and simulation of the low frequency sine and random vibration tests performed on electrodynamic shaker facilities to comprise the mechanical-borne transmission loads through the launcher to spacecraft interface. Consequently, the paper reviews techniques and methodologies to derive a reliable and representative coupled virtual vibration testing simulation environment based on experimental data. These technologies are explored with the main objectives to ensure a stable, reliable and accurate control while testing. As a result, the use of the derived simulation models in combination with the added value of improved control and signal processing algorithms can lead to a safer and smoother vibration test control of the entire environmental test campaign.

진동에서 생기는 동적 하중을 줄이기 위한 능동 최적 제어 (Active Optimal Control Techniques for Suppressing Dynamic Load in Vibration)

  • 김주형;김상섭
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.749-757
    • /
    • 2002
  • Excessive vibration in flexible structures is a problem encountered in many different fields, causing fatigue of structural components. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuate vibrations. Recently active techniques have been developed to enhance vibration control performance beyond that provided by their passive counterparts. Most often, the focus of active control methods has been to suppress structure displacements. In cases where vibration results in structure failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic loads which would be even more harmful to supports) . This paper presents two optimal control methods for attenuating steady state vibrations in flexible structures. One method minimizes shaft displacements while another minimizes dynamic reaction forces. The two methods are applied to a model of a typical flexible structure system and their results are compared. It is found that displacement minimization can increase loads, while load minimization decreases loads.