• Title/Summary/Keyword: Vibration loads

Search Result 841, Processing Time 0.021 seconds

Application of Equivalent Walking Loads for Efficient Analysis of Floor Vibration Induced by Walking

  • Kim, Gee-Cheol;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.65-76
    • /
    • 2004
  • Walking loads are usually considered as nodal loads in the finite element vibration analysis of structures subjected to walking loads. Since most of the walking loads act on elements not nodes, the walking loads applied on the elements should be converted to the equivalent nodal walking loads. This paper begins with measuring walking loads by using a force plate equipped with load cells and investigates the characteristics of the walking loads with various walking rates. It is found that the walking loads are more affected by walking rates than other parameters such as pedestrian weight, type of footwear, surface condition of floor etc. The measured walking loads are used as input loads for a finite element model of walking induced vibration. Finally, this paper proposes the equivalent nodal walking loads that are converted from the walking loads acting on elements based on finite element shape functions. And the proposed equivalent walking loads are proved to be applicable for efficient analysis of floor vibration induced by walking loads.

  • PDF

Vibration Velocity Response of Buried Gas Pipelines according to Train Speed (지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성)

  • Kim, Mi-Seung;Sun, Jin-Sun;Kim, Gun;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

보행하중을 받는 구조물의 효율적인 진동해석

  • 김기철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.159-166
    • /
    • 2000
  • Structures with a long span have a higher possibility of experiencing excessive vibration induced by human activities such as walking, running, jumping and dancing. These excessive vibration give occupants annoyance. The general method for the vibration analysis of structures subjected to walking loads is to apply a series of nodal loads with assigned time delays at the nodes. But this method has a limit in representing the walking loads. In this study, the equivalent nodal loads are introduced for an effective analysis of floor vibration induced by walking loads. And, walking loads with difference walking rate are measured and applied to the analytical model for numerical analysis.

  • PDF

Vibration Loads on KSR-III during Ground Transportation and Handling (KSR-III 로켓의 도로운송 및 핸들링에 의한 진동하중)

  • Chun, Young-Doo;Cho, Byoung-Gyu;Park, Dong-Soo;Hwang, Seung-Hyun;Kim, Jhoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.250-254
    • /
    • 2002
  • It is conducted to analyze vibration loads on KSR-III(KSR: Korea Sounding Rocket) and its major segments during their ground transportation and various handling process. These loads may be different from the real flight environment. Inadequate assessment of these loads can cause not only local damages on the rocket system but also the critical problem like flight mission failure. Therefore, transportation and handling loads must be considered during design and attenuated to ensure that the rocket structural damage does not occur. This work is concerned with the generation of criteria and prediction of transportation and handling loads for KSR-III. The results show that the shipping container is well designed to satisfy the design requirements. The maximum vibration level recorded during whole transportation and handling for KSR-III is less than 2g, the criteria of KSR-III movement condition.

  • PDF

Vibration Analysis of Building Floor Subjected to Walking Loads (보행하중을 받는 건축물 바닥판의 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

An assessment of the effect of hull girder vibration on the statistical characteristics of wave loads

  • Ogawa, Yoshitaka;Takagi, Ken
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • For the assessment of statistical characteristics of wave loads in the real sea state, the probability distribution of wave loads are computed based on the sufficient duration of computations in irregular waves. First of all, the estimation of wave impact loads is well modified applying the displacement potential formulation, which was proposed by one of authors, for solving Wagner's flow model. Consequently, the present computation method is also modified. Prior to the computation in irregular waves, preliminary computation to determine the adequate number of realization of irregular waves is examined. The effect of hull girder vibration on the statistical characteristics is examined by means of the computation with/without hull girder vibration. It is found that hull girder vibration has a certain effect on the probability of occurrence of wave loads. Furthermore, computations taking account of the effect of operation, that is the effects of ship speed and course change, is conducted for the rational evaluation of the effects of hull girder vibration. It is clarified that the effect of operation on the statistical characteristics of wave loads is significant. It is verified that the evaluation without the effect of operation may overestimate the effect of hull girder vibration.

Vibration Loads on KSR-III during Ground Transportation and Handling (KSR-III 로켓의 도로운송 및 핸들링에 의한 진동하중)

  • Chun, Young-Doo;Cho, Byoung-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.330.2-330
    • /
    • 2002
  • It is conducted to analyze vibration loads on KSR-III and its major segments during their ground transportation and various handling process. These loads may be different from the real flight environment. Inadequate assessment of these loads can cause not only local damages on the rocket system but also the critical problem like flight mission failure. Therefore, transportation and handling loads must be considered during design and attenuated to ensure that the rocket structural damage does not occur. (omitted)

  • PDF

Out-of-plane vibration of multi-span curved beam due to moving loads

  • Wang, Rong-Tyai;Sang, Yiu-Lo
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.361-375
    • /
    • 1999
  • This paper presents an analytic method of examining the out-of-plane vibration of continuous curved beam on periodical supports. The orthogonality of two distinct sets of mode shape functions is derived. The forced vibration of beam due to moving loads is examined. Two types of moving loads, which are concentrated load and uniformly distributed load, are considered. The response characteristics of beam induced by these loads are investigated as well.

Vibration Prediction of Helicopter Airframe (헬리콥터 동체의 진동 예측)

  • Yun, Chul Yong;Kim, Do-Hyung;Kang, Hee Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Groundborne Vibration from Moving Train Loads in Tunnels Considering the Effect of Joints (터널내 열차주행시 절리영향을 고려한 지반진동)

  • 이종세;최기석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.174-181
    • /
    • 2003
  • The groundborne vibration from moving train loads in tunnels could cause damages on structures and make people uneasy. With an aim at developing basis for effective screening measures, this paper attempts to study the characteristics of propagation and attenuation of groundborne vibration from moving train loads in tunnels considering the effect of joints. The wave propagation problem is modeled by a commercial code FLAC and the results are compared to those from using a finite-element-based code DIANA. It is shown that the groundborne vibration is affected significantly by the location and direction of joints.

  • PDF