• Title/Summary/Keyword: Vibration loading

Search Result 673, Processing Time 0.024 seconds

The Theoretical Investigation of the Natural Frequency Coefficients for a Thin Rectangular Tube used in the Heat Exchanger (열교환기에 사용되는 얇은 사각 단면 튜브의 고유규진동계수에 대한 이론적 분석)

  • 김기만
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.373-383
    • /
    • 1995
  • From the viewpoint of the structural design, the principal problem of the heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive fluid loading may give rise to permanent deformation of tube and would enentually result in collapse of heat exchanger, which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analtically the vibration characteristics of thin rectangular tube used in the heat exchanger. The model consists of two flat plates separated by fluid. The effects of the fluid in the tube was stuided. For analyses, the natural frequency coefficients of the model were investigated for the plate aspect ratios, channel heights, and boundary conditions. As conclusions, the natural frequency coefficients of the tube is found to be affected largely by the fluid loading and the channel heights.

  • PDF

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

A study on the improvement method of heat treatment condition for the long-term stability evaluation in the floor impact isolator (층간소음저감재 장기 내구성 평가를 위한 가열시험의 문제점 및 개선방안에 관한 연구)

  • Park, Youn-Joon;Lee, Chan-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.238-243
    • /
    • 2011
  • This study compared Kd, loss factor and thickness of floor impact isolator by loading/unloading heat treatment with results by continuous loading treatment and checked problem and improvement method of heat treatment condition for the long-term stability evaluation of the floor impact isolation. As the results, it is required the change of heat treatment condition unloading now to loading as actual weigh on the floor impact isolator.

  • PDF

System identification and reliability assessment of an industrial chimney under wind loading

  • Tokuc, M. Orcun;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.283-291
    • /
    • 2018
  • This study presents the reliability assessment of a 100.5 m tall reinforced concrete chimney at a glass factory under wind loading by using vibration-based identified modal values. Ambient vibration measurements were recorded and modal values such as frequencies, shapes and damping ratios were identified by using Enhanced Frequency Domain Decomposition (EFDD) method. Afterwards, Finite Element Model (FEM) of the chimney was verified based on identified modal parameters. Reliability assessment of the chimney under wind loading was performed by obtaining the exceedance probability of demand to capacity distribution. Demand distribution of the chimney was developed under repetitive seeds of multivariate stochastic wind fields generated along the height of chimney. Capacity distribution of the chimney was developed by Monte Carlo simulation. Finally, it was found that reliability of the chimney is lower than code suggested limit values.

A Study on the Ultrasonic In-Process Dressing Method of CBN Grinding Wheel (CBN 연삭숫돌의 초음파 인프로세스 드레싱 기법)

  • 이석우;정해도;최헌종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • A CBN wheel was used for the highly efficient and precision grinding of the mold material(STD11). The grinding form accuracy by a CBN wheel is very excellent due to its low wheel wear, but grinding fragments resemble fine powders rather chips. A fine powders by this fragmentation can easily get attached to the wheel surface and therefore causing a loading. In order to prevent this fragmentation phenomena, the alumina stick is use to processing. Because the dressing with alumina stick should be interrupted for a processing, the automation of the processing and high productivity was very difficult. The investigation on the effect of Ultrasonic In-Process Dressing(ULID) on the grinding characteristics focuses in this Paper. This ULID method is that ultrasonic vibration in my Position of wheel is used to remove impurities on the wheel surface. Finally, the rate of surface roughness change in grinding by the ULID method was less than grinding without ultrasonic vibration. Loading phenomena by the ULID method were more prevented than grinding without ultrasonic vibration.

  • PDF

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to in-plane force

  • Takahashi, Kazuo;Wu, Mincharn;Nakazawa, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.939-953
    • /
    • 1998
  • Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to an in-plane sinusoidally varying load applied along the free end are analyzed. The thin plate small deflection theory is used. The Rayleigh-Ritz method is employed to solve vibration and buckling of the plate. The dynamic stability problem is solved by using the Hamilton principle to drive time variables. The resulting time variables are solved by the harmonic balance method. Buckling properties and natural frequencies of the plate are shown at first. Unstable regions are presented for various loading conditions. Simple parametric resonances and combination resonances with sum type are obtained for various loading conditions, static load and damping.

Evaluation of Serviceability to Long Span Hollow Core PC Slab (장스팬 Hollow Core PC 슬래브의 사용성 평가에 관한 연구)

  • Jeong, Hyung-Il;Kang, Ji-Hun;Jang, Dong-Un
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.955-960
    • /
    • 2000
  • This paper evaluates the serviceability of vibration that is induced by people's walking and running when the long span hollow core slab is used. The dynamic characteristics like a natural frequency and a ramping ratio are found by impact loading test on the mock-up structures. Also, the human induced loading test output is evaluated by the various serviceability criteria. As the various serviceability criteria satisfy with this result, the vibration problem of relevant slab caused by people's behavior does not matter.

  • PDF

Applicability of Safe Blast Vibration Limits to the Blasting Work near Safety Related Structures (안전관련 구조물 근접시공시 발파진동 허용기준의 적용성에 관하여)

  • 류창하;서우춘;정소걸;이종림;주광호;이대수
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.287-296
    • /
    • 1994
  • Safety-related structures of power plants have to be protected against the effects of possible hazards and natural phenomena. Earthquakes are considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibratons are not. Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants. In this paper, discussed is applicability of existing vibration standards and industrial codes to the blasting works near safety related structures. Also evaluated are the parameters for the safe vibration limits such as measure of vibration level, frequency consideration, structure response, propagation equation, etc.

  • PDF

Buckling and vibration analysis of stiffened plate subjected to in-plane concentrated load

  • Srivastava, A.K.L.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.685-704
    • /
    • 2003
  • The buckling and vibration characteristics of stiffened plates subjected to in-plane concentrated edge loading are studied using finite element method. The problem involves the effects of non-uniform stress distribution over the plate. Buckling loads and vibration frequencies are determined for different plate aspect ratios, boundary edge conditions and load positions. The non-uniform stresses may also be caused due to the supports on the edges. The analysis presented determines the initial stresses all over the region considering the pre-buckling stress state for different kinds of loading and edge conditions. In the structural modeling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. The vibration characteristics are discussed and the results are compared with those available in the literature and some interesting new results are obtained.