• 제목/요약/키워드: Vibration loading

검색결과 674건 처리시간 0.028초

인체진동을 고려한 시트 안락성 향상 (Improvement of Seat Comfort by Reducing the Human Vibration)

  • 장한기;김승한;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.444-449
    • /
    • 2001
  • The purpose of the work is to improve comfort of a car seat, especially dynamic comfort which affects driver's discomfort during the long time driving. Definition of dynamic comfort was made before the investigation of which parameter affects seat comfort. In order to optimize design parameters so as to maximize seat comfort as well as to know the cause of discomfort, benchmarking on a target vehicle and competitive vehicles was performed, which showed both the vibration transmission characteristics and the compression set due to dynamic loading should be reduced. As a solution ball rebounds was increased by about 10% of the original foam, which showed reduction of S.E.A.T. value by 10% and of compression set by 60%.

  • PDF

상시진동신호를 이용한 교량의 감쇠특성 추정 (Estimation of Damping Properties of Bridge Structures under Ambient Vibration Condition)

  • 김성완;박동욱;김남식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.93-100
    • /
    • 2008
  • Recently, due to the advanced measurement techniques, long-term health monitoring systems have been frequently applied to existing bridges. It is known that damping ratios as one of dynamic properties would be an important parameter for evaluating the bridge condition. However, damping ratios may be normally varied depending on the external loading effects on bridges. In general, both the logarithmic decrement and the half-power band width method as a conventional method can be simply used for evaluating the damping ratios accurately when bridge response signals are measured under free vibration conditions. In this study, the Hilbert-Huang transform and the extended Kalman filter were applied to evaluate the damping ratio by using the bridge acceleration signals measured under ambient vibration condition. From the results under ambient vibration condition of bridges, it was examined that the damping ratios evaluated from both the Hilbert-Huang transform and the extended Kalman filter could be more reliable than those from conventional methods.

  • PDF

유체로 채워진 삼중 원통셸의 해석적 진동 특성 평가 (Evaluation of Analytical Vibration Characteristics for Triple Cylindrical Shells Filled with Fluid)

  • 지용관;이영신
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.150-160
    • /
    • 2002
  • The free vibration characteristics of the triple cylindrical shells filled with fluid are investigated. The triple cylindrical shells are filled with compressible fluid. The boundary condition is clamped at both ends. Analytical method is developed to evaluate natural frequencies of triple cylindrical shells using Sanders' shell theory and courier series expansion by Stokes' transformation. Their results are compared with those of finite element method to verify the validation of the method developed. The modal characteristics of shells filled with fluid at region 1, 2 and 3 are evaluated.

Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites

  • Zeverdejani, Mehran Karimi;Beni, Yaghoub Tadi
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.103-114
    • /
    • 2020
  • In this research, buckling and free vibration of rectangular polymeric laminate reinforced by graphene sheets are investigated. Various patterns are considered for augmentation of each laminate. Critical buckling load is evaluated for different parameters, including boundary conditions, reinforcement pattern, loading regime, and laminate geometric states. Furthermore, vibration analysis is investigated for square laminate. Elastic properties of the composite are calculated using a combination of both molecular dynamics (MD) and the rule of mixture (MR). Kinematics of the plate is approximated based on the first shear deformation theory (FSDT). The current analysis is performed based on the energy method. For the numerical investigation, Ritz method is applied, and for shape functions, Chebyshev polynomials are utilized. It is found that the number of layers is effective on the buckling load and natural frequency of laminates which made from non-uniform layers.

ESPI에 의한 레이저용접 조건에 따른 진동 특성 분석 (Vibration Characteristics Analysis as Laser Welding Condition by ESPI)

  • 김경석;정현철;백상규;이유황;유득남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.349-353
    • /
    • 2005
  • This paper describes the variations of resonance frequencies and vibration mode shapes of laser welded cold rolled carbon steel plate(SCP1) induced by thermal loading during laser welding processing. The characteristics of those are analyzed with stroboscopic ESPI. Electronic speckle pattern interferometry (ESPI) that the electronic processes were added to SPI is one of the very powerful method in the experimental vibration analysis field. Stroboscopic ESPI to make it reliable are compared with theory and experimental method: Finite Element Method(FEM) and Scanning Laser Doppler Vibrometer(SLDV). The results of stroboscopic ESPI are well agreed with SLDV and also the comparison with theory give good agrement within $5\%$.

  • PDF

FEM을 이용한 몰드변압기의 예방진단에 관한 연구

  • 청영기;정종욱;최명준;김재철;박일한;곽희로
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1997년도 추계학술발표회논문집
    • /
    • pp.70-73
    • /
    • 1997
  • This paper describes the technique for detecting failure symptom of mold transformer. This study uses the vibration signal analysis method and FEM as the technique. A loading back method is constructed for experiment, accelation sensors are adhered for measurement of vibration signal. Vibration signal measured by this method is analyzed into variation trend of measurement variables by control of control variables. Magnetic field distribution of molded winding is also acquired by FEM considering the design specfication and the characteristics of insulation material, in conclusion, he relation of results between vibration signal and FEM is studied by these methods.

  • PDF

진동제어장치를 이용한 고속열차-강아치교의 수직진동제어 (Vertical Vibration Control of High Speed Train-Steel Arch Bridge using Vibration Control Device)

  • 고현무;강수창;유상희;옥승용;추진교
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.360-367
    • /
    • 2003
  • This paper presents passive vibration control method to suppress train-induced vibration on a long-span steel arch bridge. According to the train load frequency analysis, undesirable resonance of a bridge will occur when the impact frequency of the train axles are close to the modal frequencies of the bridge. Because the first mode shape of the long-span steel arch bridge may take anti-symmetric shape along the bridge direction, however, the optimal control configuration for resonance suppression should be considered carefully In this study, bridge-vehicle element is used to estimate the bridge-train interaction precisely. From the numerical simulation of a loom steel arch bridge under TGV-K train loading, dynamic magnification influences are evaluated according to vehicle moving speed and efficient control system with passive dampers are presented in order to diminish the vertical displacement and vertical acceleration.

  • PDF

Computational electromechanical approach for stability/instability of smart system actuated with piezoelectric NEMS

  • Luo, Zhonghua;Cheng, Xiaoling;Yang, Yuhan
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.211-227
    • /
    • 2022
  • In this research, the size-dependent impact of an embedded piezoelectric nanoplate subjected to in-plane loading on free vibration characteristic is studied. The foundation is two-parameter viscoelastic. The nonlocal elasticity is employed in order to capture the influence of size of the plate. By utilizing Hamilton's principle as well as the first- order shear deformation theory, the governing equation and boundary conditions are achieved. Then, using Navier method the equations associated with the free vibration of a plate constructed piezoelectric material under in-plane loads are solved analytically. The presented formulation and solution procedure are validated using other papers. Also, the impacts of nonlocal parameter, mode number, constant of spring, electric potential, and geometry of the nanoplate on the vibrational frequency are examined. As this paper is the first research in which the vibration associated with piezoelectric nanoplate on the basis of FSDT and nonlocal elasticity is investigated analytically, this results can be used in future investigation in this area.

압전작동기 마운트를 이용한 능동진동제어 (Active Vibration Control Using Piezostack Based Mount)

  • 벤큐오;최상민;팽용석;한영민;최승복;문석준
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.386-392
    • /
    • 2008
  • 이 논문에서는 하이브리드 마운트의 능동진동제어 성능에 대하여 기술하였다. 제안된 하이브리드 마운트는 압전작동기의 능동요소와 고무의 수동요소로 구성하였다. 압전작동기의 작동력 특성과 고무의 동적 특성을 실험적으로 구하여 이를 바탕으로 하이브리드 마운트를 설계 및 제작하였다. 그리고 특정 질량을 결합한 진동제어 시스템을 구축하고, 그 시스템의 지배 방정식을 수립하였다. 지면으로부터 전달되는 진동을 능동적으로 절연시키기 위해서 앞먹임 제어기를 구축하고 실험적으로 구현하였다. 그리고 가속도, 힘 전달력 등 진동제어 성능을 시간과 주파수 영역에서 평가하였다.

Vibration Suppression Control for a Geared Mechanical System;Simulation Study on Vibration Suppression Effects Using a Model-Based Control with a Rotational Speed Sensor

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.694-699
    • /
    • 2005
  • This paper deals with a control technique of eliminating the transient vibration of a geared mechanical system. This technique is based on a model-based control with a rotational speed sensor in order to establish the damping effect at the driven machine part. A rotational speed sensor is installed in a driven gear, namely a bull gear. A control model is composed of a reduced-order mechanical part expressed as a transfer function between the rotational speed of the motor and that of the bull gear. This control model estimates a load speed after the rotational speed of the bull gear is acted on the transfer function. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a dies driving spindle of a form rolling machine. In this paper, the performance of this control method is examined by simulations. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF