• Title/Summary/Keyword: Vibration effect

Search Result 3,876, Processing Time 0.031 seconds

The Effect of Short-term Muscle Vibration on Knee Joint Torque and Muscle Firing Patterns during a Maximal Voluntary Isometric Contraction

  • Lee, Jiseop;Song, Junkyung;Ahn, Jooeun;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • Objective: To investigate the effect of short-term vibration frequencies on muscle force generation capabilities. Method: Six healthy participants were recruited for this study and only their dominant leg was tested. The subjects were tested under five conditions of vibration frequencies with constant amplitude: 0 Hz (no vibration), 30 Hz, 60 Hz, and 90 Hz, and the vibration amplitude was 10 mm for all frequency conditions. The vibration was applied to the rectus femoris (RF). The subjects were then instructed to maintain a steady-state isometric knee joint torque (100 Nm) for the first 6 s. After the steady-state torque production, the subjects were required to produce isometric knee joint torque by leg extension as hard as possible with a start signal within the next 3 s. The vibration was applied for ~4 s starting from 1 s before initiation of the change in the steady-state knee joint torque. Results: The results showed that the maximum voluntary torque (MVT) of the knee joint increased with the vibration frequencies. On average, the MVTs were 756.47 Nm for 0 Hz (no vibration) and 809.61 Nm for 90 Hz. There was a significant positive correlation (r = 0.71) between the MVTs and integrated electromyograms (iEMGs). Further, the co-contraction indices (CCIs) were computed, which represent the ratio of the iEMGs of the antagonist muscle to the iEMGs of all involved muscles. There was a significant negative correlation (r = 0.62) between the CCIs and MVTs, which was accompanied by a significant positive correlation (r = 0.69) between the iEMGs of the vibrated muscle (RF). There was no significant correlation between the MVTs and iEMGs of the antagonist muscle. Conclusion: The results of this study suggest that the short-term vibration on the muscle increases the level of muscle activation possibly owing to the increased Ia afferent activities, which enhances the muscle force generation capability.

Analytical study on free vertical and torsional vibrations of two- and three-pylon suspension bridges via d'Alembert's principle

  • Zhang, Wen-ming;Wang, Zhi-wei;Zhang, Hao-qing;Lu, Xiao-fan;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • This study derives the differential equations of free vertical bending and torsional vibrations for two- and three-pylon suspension bridges using d'Alembert's principle. The respective algorithms for natural vibration frequency and vibration mode are established through the separation of variables. In the case of the three-pylon suspension bridge, the effect of the along-bridge bending vibration of the middle pylon on the vertical bending vibration of the entire bridge is considered. The impact of torsional vibration of the middle pylon about the vertical axis on the torsional vibration of the entire bridge is also analyzed in detail. The feasibility of the proposed method is verified by two engineering examples. A comparative analysis of the results obtained via the proposed and more intricate finite element methods confirmed the former feasibility. Finally, the middle pylon stiffness effect on the vibration frequency of the three-pylon suspension bridge is discussed. It is found that the vibration frequencies of the first- and third-order vertical bending and torsional modes both increase with the middle pylon stiffness. However, the increase amplitudes of third-order bending and torsional modes are relatively small with the middle pylon stiffness increase. Moreover, the second-order bending and torsional frequencies do not change with the middle pylon stiffness.

Effect of Whole Body Vibration on Osteoporotic Trabecular Bone of Rats - Compared with the Effect of Actonel (전신진동이 골다공증이 유발된 쥐 해면골에 미치는 영향 - 골다공증 치료제 효과와 비교)

  • Ko, Chang-Yong;Lee, Tae-Woo;Woo, Dae-Gon;Kim, Hyo-Seon;Kim, Han-Sung;Lee, Beob-Yi;Lim, Do-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.148-154
    • /
    • 2008
  • Pharmacotherapy was mainly used to treat osteoporosis. However, some researches showed that pharmacotherapy could induce unexpected adverse effects. Some studies showed that whole body vibration affected beneficially osteoporosis. This paper studied the effect of whole body vibration fur osteoporosis compared with the effect of pharmacotherapy. 10 female rats were used and allocated into 4 group, CON, SHAM, DRUG, and WBV. Rats except SHAM group were ovariectomised to induce osteoporosis. Rats in WBV group were stimulated in whole body vibration at magnitude of $1mm_{peak-peak}$ and frequency 45Hz, for 8 weeks (30 min/day, 5 days/week). Rat in DRGU group was orally administered the Actonel (0.58mg/Kg), for 8 weeks (5days/week). The $4^{th}$ lumbar in rats were scanned at a resolution of $35{\mu}m$ at baseline, before stimulation, and 8 weeks after stimulation by In-vivo micro computed tomography. For detecting and tracking changes of biomechanical characteristics (morphological and mechanical characteristics) in lumbar trabecuar bone of rats, structural parameters were measured and calculated from acquiring images and finite element analysis was performed. In the results, loss of quantity and change of structure of trabecular bone in WBV group were smaller than those in both CON and SHAM groups. In addition, mechanical strength in WBV group was stronger than that in both CON and SHAM groups. In contrast, biomechanical characteristics in WBV group were similar with those in DRUG group. These results showed that reasonable whole body vibration was likely to treat osteoporosis and be substituted partly for drug treatment.

Experimental Study for Prediction of Ground Vibration Responses by the Low-vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Kang, Sung-Hoo;Jeoung, Sug-Kyu;Park, Sun-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • This study investigated the SIP-method as a low-vibration, low-noise engineering method. The ground vibrations caused by the SIP-method were measured and analyzed in each step. From the analysis results, quantitative ground vibration values and reliable vibration estimation equations were proposed. Furthermore, the ground vibrations caused by the SIP-method were compared with the ground vibrations caused by other methods presented by existing studies. Based on the vibration estimation equation with 50 % reliability, the ground vibration values by the SIP-method at the distance of 10~150 m corresponded to 17~57 % of the ground vibration values by the equation proposed by Attewell & Famer, and 14~96 % of the ground vibration values by the equation proposed by Prof. Park in his study using a diesel drop hammer. These results showed that the ground vibration reduction effect of the SIP-method was higher those of other general engineering methods. Finally, the permissible scope of work using the SIP-method which meets the domestic vibration standards was presented.

Effects of Walking with Non-Electric Power Vibration Shoes on Body Temperature and Peripheral Circulation (무전력형 진동신발 보행이 체온과 말초 혈액순환에 미치는 영향)

  • Lee, Hyun Ju;Lee, Cheong Gn;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.235-241
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the body temperature peripheral circulation with vibration shoes in healthy 10 adults. The magnetic vibration device with non-electric power was mounted in the midsole of the vibration shoes. The experiment was divided into two groups: vibration shoes and no vibration shoes. Subjects were randomly selected and measured body surface temperature by digital infrared thermal imaging (DITI) and non-invasive capillaries change by nailfold microscope (NFM). After walking in a treadmill for 15 minutes at 4.0 km/h speed wearing normal shoes or vibration shoes, DITI and NFM were measured. The walking with vibration shoes showed the body surface temperature shift from the proximal to the distal. In addition, the diameter of the nailfold capillary in the vibration shoes group was thicker and clearer due to the increased blood flow than that of the no vibration shoes group. The vibration shoes are easy to apply to anyone who can walk because it can give vibration stimulation by walking without additional time, cost, and effort in daily life. Further studies are needed to explain the physiological effects of vibration frequency and intensity on the long-term perspective of target subjects resulting from vascular dysfunction.

Fabrication and Microstructures of Al-Pb Alloy in the Ultrasonic Vibration (초음파진동 조사장 내에서 Al-Pb계 합금의 제조 및 조직)

  • Park, Hun-Berm
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2002
  • Water and oil were completely synthesised with ultrasonic vibration energy irradiation. Pure Pb were added into Al melt during irradiated the ultrasonic vibration energy in 750. And the ultrasonic vibration energy was applied to Al-Pb melt to enhance the miscibility. Microstructural analysis, thermal analysis and X-ray diffraction analysis were carried out to evaluate the effect of the ultrasonic vibration energy on the castability and microstructural reliability. (1) Using the ultrasonic vibration energy irradiation, the complete mixing of water and oil was obtained. (2) The microstructure was refined by the application of ultrasonic vibration energy in Al-Pb alloys. (3) Relatively large Pb particles, $5{\mu}m$ were most distributed alone the grain boundaries with fine Pb particles evenly distributed in the matrix. (4) The solubility of Ph in Al-Pb alloys was increases up to 5% with the application of ultrasonic vibration energy.

Examination on High Vibration and Branch Vent Pipe's Failure of Complex Piping System Suppling Condensate-Water in Power Site (발전소 복수 공급 배관계의 고진동과 분기 배기배관의 절손 규명)

  • Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.380-384
    • /
    • 2010
  • A disturbance flow at piping bands and discontinuous regions such as a valve, a header has a intense broadband internal pressure field and a sound field which are propagated through the piping system The fields becomes the source of a vibration of this piping system. Intense broadband disturbance flow at a discontinuous region such as elbows, valves or headers generates an acoustical pulsation. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the high vibration and the branch vent pipe's failure of condensate-water supply piping system due to the effect of acoustical pulsations by flow turbulence from the flow control valves of globe type in a power site.

  • PDF

A Study on the Vibration Characteristics of Powertrain in Motion (차량 주행시 동력전달계의 진동 특성 연구)

  • 최은오;홍동표;안병민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.27-33
    • /
    • 1998
  • The powertrain is a system of exciters which are connected by vibration transmitters and noise radiators. The powertrain has infinite natural frequencies. If the engine explosion, excites a certain natural frequency, then the powertrain system seriously vibrates. The torsional vibration arises from here. Torsional vibration like this can cause various noises as rattle and booming. In this study, the simulation models of multiple degrees of freedom were developed to reduce the torsional vibration of the powertrain. These models are combined mass moment of inertias with torsional springs. The free and forced vibration analyses were carried out by these models; and the validity of the simulation models were checked by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF