• Title/Summary/Keyword: Vibration behavior

Search Result 1,648, Processing Time 0.028 seconds

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

Analytical Research on Dynamic Behavior of Steel Composite Lower Railway Bridge (강합성 하로 철도교의 동적거동에 대한 해석적 연구)

  • Jeong, Young-Do;Koh, Hyo-In;Kang, Yun-Suk;Eom, Gi-Ha;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • The existing middle-long span railway bridge has been mainly applied to steel box girder bridges. However, the steel box girder bridges have disadvantages in securing the space under the bridge, and the main girder is made of a thin plate box shape, resulting in a ringing noise due to the vibration. Many complaints about noise have been raised. For this reason, there is a need for the development of long railway bridges that can replace steel box girder bridges. In this paper, the characteristics of the steel composite railway bridge currently developed were introduced and a time history analysis was conducted using MIDAS Civil reflecting the speed of KTX load for 40m and 50m bridges. In addition, from the analysis results, the dynamic behavior of target bridges were verified and it was examined whether they meet the dynamic performance criteria proposed in the railway design standards. As a result, all of the bridges under review satisfied the dynamic safety criteria, however, in case of 40m of span, the vertical acceleration value was very large. In order to solve this problem, authors proposed the improvement plan and corrected the cross section to confirm that the vertical acceleration decreased.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.

Vibration Control of Mega Frame Structures using a Semi-active Tuned Mass Damper (준능동 TMD를 이용한 메가골조구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.57-68
    • /
    • 2007
  • The mega frame system is becoming popular for the design and construction of skyscrapers because this system exhibits structural efficiency by allowing high rigidity of the structure while minimizing the amount of structural materials to be used. Since the mega frame system is usually adopted for super high-rise buildings, the comfort of occupants may be main concerns in the practical application of this system. For the enhancement of the serviceability of mega frame structures, a semi-active tuned mass damper (STMD) is developed in this study. To this end, a Magnetorheological (MR) damper is employed replacing passive damper as a semi-active damper to improve the control effect of a conventional TMD. Since a conventional finite element model of mega frame structures has significant numbers of DOFs, numerical simulation for investigation of control performances of a STMD is impossible by using the full-order model. Therefore, a reduced-order system using minimal DOFs, which can accurately represent the dynamic behavior of a mega frame structure, is proposed in this study through the matrix condensation technique To improve the efficiency of the matrix condensation technique, multi-level matrix condensation technique is proposed using the structural characteristics of mega frame structures. The efficiency and accuracy of the reduced-order control proposed in this study and the control performance of a STMD were verified using example structures.

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

Benchmark Test of CFD Software Packages for Sunroof Buffeting in Hyundai Simplified Model (차량 썬루프 버페팅 현상에 대한 전산 해석 소프트웨어의 예측 성능 벤치마크 연구)

  • Cho, Munhwan;Oh, Chisung;Kim, HyoungGun;Ih, Kang-duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.171-179
    • /
    • 2014
  • Sunroof buffeting is one of the most critical issues in the vehicle wind noise phenomena. The experimental approach to solve this issue typically requires a lot of time and resources. To reduce time and cost, the numerical approach could be taken, which can also privide more insights into physical phenomena involved in sunroof buffeting, only if the accuracy in its predictions are guranteed. The benchmark test of various numerical solvers is carried out for the buffeting behavior of a simplified vehicle body, the Hyundai simplified model(HSM). The results of each solver are compared to the experimental measurements in a Hyundai aeroacoustic wind tunnel(HAWT) at various wind speeds. In particular, acoustic response tests were performed and the results were provided prior to all simulations in order to consider the real world effects that could introduce discrepancies between the numerical and experimental approaches. Through this study, most solvers can demonstrate an acceptable accuracy level for actual commercial development and high precision experimental data and computational prediction priories can be shared in order to promote the numerical accuracy level of each numerical solver.

A Study on the Flow Characteristics in Tube Banks due to the Upstream Periodic Velocity Fluctuation (전열 관군에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.446-451
    • /
    • 2020
  • Flow induced vibration in a heat exchanger may cause damage to piping. The purpose of this study was to compare the characteristics of vortex shedding behavior through the circular tube banks at several tube locations, No.1, No. 10, and No. 19, with respect to time when the flow velocity of the inlet is constantly and periodically fluctuating.(60) The time characteristics of lift and the PSD characteristics were also investigated. In the case of periodic inlet flow velocity, strong vortex occurred at some time and after that time, a weak vortex was generated through the tube banks simultaneously. In the case of constant inlet flow velocity, the lift fluctuating frequency was 37.25Hz and that at the No. 19 tube was 18.63Hz and near 50Hz. In the case of periodic inlet flow velocity, the lift fluctuating frequency was 37.25Hz and 18.63Hz. The lift fluctuating frequency at No. 19 tube was observed broadly from 20Hz and 50Hz.

Post-Processing of High-Speed Video-Laryngoscopic Images to Two-Dimensional Scanning Digital Kymographic Images (초고속 후두내시경 영상을 이용한 평면 스캔 비디오카이모그래피 영상 생성)

  • Cha, Wonjae;Wang, Soo-Geun;Jang, Jeon Yeob;Kim, Geun-Hyo;Lee, Yeon-Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Background and Objectives : High-speed videolaryngoscopy (HSV) is the only technique that captures the true intra-cycle vibratory behavior of the vocal folds by capturing full images of the vocal folds. However, it has problems of no immediate feedback during examination, considerable waiting time for digital kymography (DKG), recording duration limited to a few seconds, and extreme demands for storage space. Herein, we demonstrate a new post-processing method that converts HSV images to two-dimensional digital kymography (2D-DKG) images, which adopts the algorithm of 2D videokymography (2D VKG). Materials and Methods : HSV system was used to capture images of vocal folds. HSV images were post-processed in Kay image-process software (KIPS), and conventional DKG images were retrieved. Custom-made post-processing system was used to convert HSV images to 2D-DKG images. The quantitative parameters of the post-processed 2D-DKG images was validated by comparing these parameters with those of the DKG images. Results : Serial HSV images for all phases of vocal fold vibratory movement are included. The images were converted by the scanning method using U-medical image-process software. Similar to conventional DKG, post-processed 2D DKG image from the HSV image can provide quantitative information on vocal fold mucosa vibration, including the various vibratory phases. Differences in amplitude symmetry index, phase symmetry index, open quotient, and close quotient between 2D-DKG and DKG were analyzed. There were no statistical differences between the quantitative parameters of vocal fold vibratory movement in 2D-DKG and DKG. Conclusion : The post-processing method of converting HSV images to 2D DKG images could provide clinical information and storage economy.

  • PDF

Seismic Responses Control of Coupled Shear Wall Structures Using LRBs (LRB를 이용한 병렬전단벽 구조물의 지진응답제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. When these structures are subjected to seismic excitations, excessive shear forces are induced in coupling beams. Accordingly, brittle failure of coupling beams may occur or shear walls may yield first. To avoid this problem, damping devices can be installed in coupling beams. It can increase the vibration control effect and improve the seismic resistance performance of the coupled shear wall structure by avoiding stress concentration and the brittle failure of coupling beams. Based on this background research, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam in this study and the authors investigated the seismic response control effect and stress distribution of the proposed system. To this end, a modeling technique that can effectively predict the structural behavior of coupled shear wall structures has been proposed. With this proposed technique, time history analyses of the example coupled shear wall structure subjected to seismic excitation were performed and the vibration control effects of the seismic responses were investigated.