• 제목/요약/키워드: Vibration actuator

검색결과 977건 처리시간 0.029초

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

유연성 포인팅 시스템의 진동모드 보상을 위한 2단계 슬라이딩 모드 제어기 (Two-Stage Sliding Mode Controller for Bending Mode Suppression of a Flexible Pointing System)

  • 박장현;김경완;이교일;김학성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.971-976
    • /
    • 1996
  • A flexible pointing system mounted on top of a vehicle suffers from performance degradation due to bending vibrations as the vehicle runs on a bump course. In order to improve the pointing performance, the pointing structure's vibrations should be suppressed. In this paper, a nonlinear controller is designed to control the tip position of the pointing system while actively suppressing the vibrations. To cope with high order dynamics and nonlinearities of the plant and hydraulic actuating system, a two-stage sliding mode controller is devised. The desired actuating pressure is obtained in the first stage and then the in put current In the hydraulic servo system is computed to generate the pressure. The simulation results show the effectiveness of this scheme and improvements in pointing accuracy.

  • PDF

공기 베어링 효과를 고려한 HDD 서스펜션 시스템의 트랙탐색 동특성 (Track Seek Dynamics of HDD Suspension System Considering Air Bearing Effects)

  • 김정주;박노열;강태식;정태건
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.198-205
    • /
    • 2001
  • Recently, almost all hard disk drives employ the rotary actuator system. The performance of an HDD depends on the accuracy and speed of tracking motion. We study the dynamics of head-suspension assembly during track seek. We develop the numerical analysis program to study the dynamic characteristics of HDD suspension system considering the air bearing effects. The track seek simulation by using the developed program helps to estimate the effect of the suspension vibration on the air bearing dynamics. We calculate the behaviour of the air bearing for the given track seek profile and calculate the positioning error during track seek process due to the lateral deflection of the suspension.

자기변형재료를 이용한 절삭공구용 마이크로포지쇼너의 개발

  • 박영우;원문철
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.75-81
    • /
    • 1998
  • In the machining process, variation in cutting forces results in relative displacements between the tool and the workpiece leading to tool vibration. Also there is a demand to change the depth of cut very frequently. One solution for the both cases is to develop a system which has the ability to reposition a cutting tool to a very small level, i.e., micron. This paper presents the development of a micropositioner using a magnetostrictive material. The developed micropositioner is implemented to a lathe and subjected to various tests. The results show that the micropositioner with a magnetostrictive actuator has good potential for machining application.

  • PDF

신호 압축법을 이용한 시선안정화 제어용 짐벌의 동특성 규명 (Identification of Dynamic Characteristics of Gimbals for Line-of-Sight Stabilization Using Signal Compression Method)

  • 김문식;유기성;윤정주;이민철
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.72-78
    • /
    • 2008
  • The line-of-sight(LOS) stabilization system is a precision electro-mechanical gimbals assembly for suppressing vibration due to its environment and tracking the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. The controller consists of a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated by the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. The quasi-impulse response through linear element included in the gimbals could be obtained by the signal compression method. The unknown parameter of the linear element could be estimated as comparing the bode plots for impulse response from gimbals with them from model's response.

센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계 (Structure-Control Combined Optimal Design with S/A Collocation)

  • 박중현
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF

소음·진동을 이용한 CNN기반 원동 구동장치 고장진단 (CNN based Actuator Fault Diagnosis using Noise·Vibration)

  • 이세훈;신보배;이재승;김희석;김풍일
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.27-28
    • /
    • 2018
  • 본 논문에서는 구동 장치의 다양한 상태를 나타내는 소음과 진동으로부터 특징데이터를 추출하여 이를 학습 한 후 실시간으로 장치의 상태를 진단하는 하였다. 실제 현장에서 발생할 수 있는 예측 외 소음환경에 유연하게 대처하기 위해 CNN모델 사용과 소리, 진동 데이터의 Butterworth filter와 Kalman filter를 적용하여 노이즈 배제처리 하였다. 제안된 시스템의 유용성을 확인하기 위해 제안된 시스템과 기존 CNN기반 시스템을 소음환경에서 비교 실험하였다.

  • PDF

자기시스템의 전자력 밀도 해석 (Electromagnetic Force Density Analysis of Magnetic System)

  • 이세희;최명준;김창욱;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.201-203
    • /
    • 1997
  • As electromagnetic systems have the complexity and high performance, they should be designed to take into account the vibration, noise and strain of mechanical aspect as well as electrical problems. Until now, mechanical approaches have been tried to analyze the subject, but it is difficult to figure out the matter in mechanical consideration. Because they are mainly related to electromagnetic phenomena. This paper deals with the theories and numerical formulations of magnetic force density. Several methods are applied to an actuator and DC machine model to calculate magnetic force density. These results are compared with the total force obtained by maxwell stress tensor and virtual work principle.

  • PDF

고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석 (Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle)

  • 진재현;나홍철;전승배
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.