• 제목/요약/키워드: Vibration Ride Quality

검색결과 100건 처리시간 0.022초

유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화 (Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm)

  • 박선균;최영휴;최헌오;배병태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF

제어 가능한 댐퍼를 적용한 시트 현가장치의 승차감 평가 (Ride Quality Evaluation of Seat Suspension Adopting Controllable Damper)

  • 한영민;민철기
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1199-1205
    • /
    • 2011
  • In the present work, a seat suspension system adopting semi-active damper is evaluated for driver's ride quality. A cylindrical type of ER(electrorheological) damper is designed and manufactured for the seat suspension of heavy vehicles. The governing equation is derived under consideration of human vibration. A sliding mode controller is then synthesized and experimentally realized on the manufactured ER seat suspension while a driver is sitting on the controlled seat. Ride quality is evaluated by fatigue decreased proficiency boundary, vibration dose value and crest factor utilizing weighted-acceleration according to ISO2631.

국내외 승용차들의 승차감 지수의 비교 및 분석 (Investigation of Ride Value for Overseas and Domestic Passenger Cars)

  • 정완섭;조영건;박세진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.324-329
    • /
    • 1997
  • This paper introduces experimental results of ride values assessed for domestic and overseas passenger cars. The experiment was executed about four vehicles, three Korean persons, and two roads by measuring human 12-axis. The results include the comparison of the component ride values, overall ride value, and seat effective amplitude transmissibility. The relative comparison of the ride values for different cars is shown in this paper, which may lead us to judge the current address of Korean ride quality-related technology.

  • PDF

농용 트랙터의 시트의 진동 승차감 평가 (Ride Quality Evaluation of Agricultural tractor Seats)

  • 이종광;박세진;강영선;강이석
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2001년도 동계 학술대회 논문집
    • /
    • pp.16-21
    • /
    • 2001
  • The ride quality of agricultural tractor seats is evaluated based on the vibration of the human bodies. Tractor ride vibration levels have been measured at the person-seat interface along 7 axes(3 translational axes at the feet, 3 translational axes on a seat surface and 1 axis at the seat back), under different operating conditions. Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the ride values, such as the seat effective amplitude transmissibility, the component ride value, and the overall ride value based on acceleration root mean square are evaluated for a conventional tractor using frequency weighting functions and axis multiplying factors. The ride indices are also studied considering to the variation of vehicle speed and road profile.

  • PDF

인체 진동을 고려한 국내의 철도 차량의 진동 환경 평가에 관한 연구 (A Study on the Evaluation of Vibration's Environment in a Korean Rail Vehicles based on the Human Vibration)

  • 김진기;정완섭;홍동표
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1100-1104
    • /
    • 2001
  • This paper introduces experimental results related to the vibration ride conditions that a korean male subject experienced in the railway trains and the express bus. Two types of railway train's, Samaulho and Mugunghwaho, and the express bus were chosen to measure how much the whole-body vibrations of the back, hip and feet are exposes to the subject. Measured vibration signals were analysed to assess the ride conditions quantitatively and qualitatively. Analysed results are illustrated to see how much typical public transportation systems in korea expose vibration to passengers.

  • PDF

변수모델을 이용한 전달경로분석법(OPAX)과 전달률 함수를 사용한 전달경로분석법(OTPA)을 사용한 승차감 저해요인분석 (Analysis of the Cause of Hindrance for Ride Quality with OPAX and OTPA)

  • 김종식;신광수;최상일;임세빈;김진동;이상권
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.935-942
    • /
    • 2014
  • The ride quality investigation is on-going topic in the car industry since its global standard has not evaluated and it is difficult to point out one part that hinders the ride quality. Since the traditional transfer path analysis that is widely used in car industry to investigate the ride quality requires a lot of test time to process the full data so that there are problems to conduct in industry. Based on these disadvantages, new approaches have developed such as OPAX(operational path analysis with eXogeneous inputs) and OTPA(operational transfer path analysis) for last decades. The OTPA only requires the operational data for evaluate the contribution of vibration sources and the OPAX has advantage of using parametric model to estimate the operating load and needs a minimum set of extra tests with excitation. In this paper, for evaluating the hindrance of ride quality two methods are used and the result is compared with another result of a car having higher ride quality.

자기부상열차 현가장치의 능동진동제어 (Active vibration control of the secondary suspension for the magnetic levitation vehicle)

  • 강정식;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.876-879
    • /
    • 1996
  • The vibration of an attractive magnetic levitation(Maglev) vehicle transportation system is caused by the irregularity of the guideway track and the performance of the suspensions of the Maglev system. It is essential for us to give attention to the secondary suspension of the vehicle system as it determines the ride quality. In order to improve the ride quality and running stability, active secondary suspensions have been developed and applied to the vibration problems. This paper analyzes the performance of the active secondary suspension which is applied to an attractive magnetic levitation vehicle system running on a rough track. The dynamics of the suspension system and the optimal control problems are studied. According to the transient and frequency response analyses to the track disturbance, the ride quality of an attractive Maglev vehicle has been improved by applying the designed LQR active controller, and it has been confirmed that this improvement was also influenced by the configuration of the system.

  • PDF

객차의 현가장치 변수가 상하진동에 미치는 영향 (Effect of the Parameter of the Suspension System on the the Vertical Vibration of the Passenger Vehicle)

  • 허현무;권영필;최경진
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1309-1316
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the field test, Optimal condition was obtained for the stiffness ratio of the primary spring and the secondary of the suspension system. When the stiffness ratio was increased, the vibration was increased on the car body and decreased on the bogie, and ride quality are getting worse because of increase of the vertical natural frequency of the car body. The results of this study are usefull to improve the technology of the ride quality of KT-23 type vehicle.

차량 승차감에 미치는 공차의 영향 분석을 위한 해석적 방법 (Analytical Method to Analyze the Tolerance Effect on the Vehicle Ride Comfort)

  • 김범석;유홍희
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.549-555
    • /
    • 2008
  • Analytical method to analyze the tolerance effect on the vehicle ride comfort is suggested in this paper. Ride comfort is one of the most important performance indices which decide the vehicle design quality. In general, the ride comfort is affected by the variations of parameters of a vehicle model. Therefore, the effects of the parameters on the ride comfort need to be evaluated statistically based on the whole-body vibration of the vehicle. In this paper, weighted RMS values of the acceleration PSD of a seat position are used to define the ride comfort. The equations of motion and the sensitivity equations are derived based on a 5-DOF vehicle model. By employing the sensitivity information of the acceleration at the seat position, the tolerance effect on the vehicle ride comfort could be effectively analyzed.

설계변수의 산포를 고려한 차량 승차감의 강건최적설계 (Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters)

  • 송필곤;;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.