• Title/Summary/Keyword: Vibration Ride Quality

Search Result 100, Processing Time 0.02 seconds

Ride Quality Assessment of Automative Seats by Simultaneous 3-Axis Excitation (동시 3축 가진에 의한 자동차 의자류의 승차감 평가)

  • 정완섭;우춘규;박세진;김수현
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.143-152
    • /
    • 1997
  • This paper introduces experimental results of the ride qulaity characteristics of automotive seats fixed on the vibration table that is noving simultaneously to the three-axis in a similar way to the real running condition. Vibration experiment was carried out for five different automotive seats and four Korean individuals. The assessment of the ride quality characteristics for each seat and indiviual was made not only from the analysis of vibration measurements but also from the evaluation of weighied vibration signals, which were obtained using the frequency weighting function and the multiplication factor dependent on the position and axis of vibration exposure to wehole-body. The usefulness of those assessment results in analysis of the ride quality of seats is discussed and their limitation is also pointed out in this paper.

  • PDF

Effects of chassis flexibility and engine vibration in ride quality (차체의 턴성효과와 엔진의 진동이 승차감에 미치는 영향분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.205-213
    • /
    • 1997
  • In this study, dynamic analysis of a passenger car is carried out to analyze ride quality over a random road profile. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi- link type. The following five different models are constructed and compared to see the effects of engine vibration and chassis flexibility in the ride quality. (1) one rigid chassis model, (2) a rigid chassis and rigid engine model, (3) a rigid engine and flexible chassis model with one vibration mode, (4) one flexible chassis model with six engine vibration modes and one chassis vibration mode, (5) one flexible chassis model with seven vibration modes and four static correction modes. The result shows that engine vibration modes and the first bending mode of the chassis are important in the ride quality.

  • PDF

The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration (인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험)

  • 김진기;홍동표;최만용
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

Evaluation of Ride Vibration of Agricultural Tractors(I) - A Review of Ride Quality Evaluation Criteria - (농용 트랙터의 승차(乘車) 진동(振動) 평가에 관한 연구(I) - 승차 진동의 평가 기준에 관한 고찰 -)

  • Chung, S.S.;Moon, G.S.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.314-325
    • /
    • 1992
  • This paper reviews some relevant criteria for the evaluation of ride quality of agricultural tractors. Although there still exist many deficiences and shortcomings, ISO 2631 'Guide for the evaluation of human exposure to whole body vibration' may be the most pertinent criterion to the ride quality evaluation of tractors. The effects of ride vibrations on the human health and performance were also reviewed and summarized in general terms.

  • PDF

Ride Quality Investigation of Passenger Cars on Different Road Conditions

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.389-396
    • /
    • 2013
  • Objective: The ride qualities of the six passenger cars were evaluated in 4 subjects on the highway and uneven road. The relation between vibration with driving velocity and driving posture were also investigated separately. Background: Ride comfort plays an important role in the vehicle design. Vibration is the one of the principal components associated with ride comfort. Method: The acceleration of the foot, hip and back were measured using B&K accelerometers in this study. The velocity of the passenger cars was maintained at a constant speed of 80km/h on the highway and 40km/h on the uneven road. For evaluating the effects of driving velocity and driving posture on vehicle's vibration level, separate experiments were performed on the highway with 5 different vehicle speeds and 5 different backrest angles, respectively. Results: The overall ride value of the luxury car showed the best result while the smaller car showed the worst value on the highway. On the uneven road the overall ride value level was increased 75~98%. All the vehicles had the SEAT value less than 1. Faster the velocity lowers the SEAT value. The ride quality in terms of vibration gets worst when the backrest angle increased. Conclusion: The smaller car had a first mode at the higher frequency and showed higher vibration level. SEAT value was mostly affected by the seat property not by vehicle. We ranked the luxury car seat had a best vibration reduction quality than others based on SEAT values. When the driving velocity increased, the overall ride values were increased proportionally and the SEAT values were somewhat decreased. Application: Evaluation of whole-body vibration in the passenger car.

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

Human Vibration Measurement for Passenger Car and Seat Characteristics Optimization (승용차에서의 인체 진동 측정 및 시트 특성 최적설계)

  • Cho, Young-Gun;Yoon, Yong-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1155-1163
    • /
    • 1999
  • This study deals with the vibration ride quality for passenger car when running on straight highway at the speed of 70km/h. Ten accelerations were measured at four positions, three axes each at the feet, hip, and head, and one axis at the back. Five seats that have different static sponge stiffness were used, and two subjects were participated. These accelerations were analyzed to produce the ride values such as component ride value and overall ride value. It was hard to see the difference of ride value by the change of sponge stiffness. However we could rank the ride quality by the total vibration exposed to passengers. From the transfer function between the hip and the foot, the fundamental mode was observed to be around 5.8Hz. Also the transfer function between the head and hip was studied. The optimal damping ratio of the seat was calculated according to the seat natural frequency with human weighting filter which makes the optimal damping ratio different from that without weighting filter.

Ride Quality of a Passenger Car with Nonlinear Suspension System (현가장치의 비선형성을 고려한 승용차의 승차감 해석)

  • Cho, Sung-Jin;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.838-843
    • /
    • 2005
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, a dynamic experiment for a spring and a damper of a passenger car is performed to analyze the nonlinear characteristics using MTS 1-axial testing machine and a mathematical nonlinear dynamic suspension model based on experimental data is devised to estimate the ride quality using Billings' method. The devised nonlinear model is applied to the ride quality analysis using K factor and the effect of suspension parameters is examined. As a result, the friction between the cylinder and the piston of a damper is the most effective parameter for the ride quality of a passenger car.

  • PDF

Human Response Measurement and Ride Quality Evaluation for Seats having various Material Porperties (물성치가 다른 시트에서의 인체 진동 측정 및 승차감 평가)

  • 조영건;박세진;윤용산
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.171-180
    • /
    • 2000
  • This paper deals with the whole-body vibration and ride quality evaluation in the vertical direction. The responses of the floor, hip, back, and head in four subjects were measured for various seats when the floor was excited by random vibration with r.m.s of 1.2m/s2 in the vertical direction. In the transmissibility between the hip and floor, the fundamental mode is observed at 4.4 Hz. In the transmissibility between the head and floor, the fundamental mode at 4.4Hz and the second mode at 7.6Hz are observed. It is shown that the head motion is 41% larger than the hip motion and the response of female subject is larger than that of male subject. The response without backrest also was compared with that with backrest. From these human responses ride quality of five seats were evaluated by the ride value such as transfer ration having frequency weighting function is the statistical sense. It is observed that the seat having high damping property can reduce the most acceleration exposed to hip in the statistical sense for all ride valves, while the seat having different seat spring doesn't show statistical difference.

  • PDF

A Study on the Evaluation of Ride Comfort using Human Model (인체모델을 사용한 승차감의 정량적 평가에 관한 연구)

  • Kim, Kwangsuk
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • Vibrations on the floor in a car are transmitted to the foot, hip, and back from the seat. Human body recognizes these vibrations, but the sensitivity for each vibration is different. To evaluate these vibrations, RMS(root mean square) of accelerations, VDV(vibration does value) are commonly used. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive. The purpose of this paper is to briefly review the status of several ride vibration standards and criteria having relevance to construction machinery vehicles and to suggest recommendations for the effective use of such criteria in vehicle / component development.