• Title/Summary/Keyword: Vibration Reduction Efficiency

Search Result 189, Processing Time 0.034 seconds

Vibration Control of Membrane with Tension Gradient Using Multiple Dynamic Absorber (다중 동흡진기를 이용한 장력구배를 갖는 박판의 진동 제어)

  • Park, Chong-Hyun;Kim, Sung-Dae;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.595-603
    • /
    • 2005
  • In this work, the multiple dynamic absorber( MDA ) is introduced to reduce several vibration modes of shadow mask simultaneously and its design method is developed from the theory of the simple dynamic absorber. When designing the dynamic absorber, there are three significant design parameters such as mass, damping ratio and tuning frequency. Therefore the sensitivity analysis for those parameters has been executed in order to find out the design criteria of multiple dynamic absorber using the finite element model of shadow mask. The multiple dynamic absorber(MDA) designed by the proposed method is tested theoretically and experimentally to estimate the efficiency of vibration reduction. From the results, it is verified that the method is feasible to apply the system having the multiple nitration modes and more efficient than the thin wire-type damper used commercially to reduce the vibration of shadow mask.

Active Vibration Control of Three-Stage Mast of Reach Truck (리치트럭의 3단 마스트 흔들림 능동 제어)

  • Moon, Hyeon Mo;Yoo, Kwang-Seon;Ahn, Young-Chul;Mah, Pyeong-Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • The reach truck, which is mainly used in warehouses, is required to have high-mast to improve its working efficiency and space utilization. The high-mast takes advantage of more vertical space but severe vibrations are easily generated at the end of the high-mast. These vibrations may cause a collision or misplacement of loading location at work. In this study, the vibration characteristics of a three-stage high-mast of a reach truck are analyzed, and an active vibration controller verified through a similar experiment is designed to reduce this vibration. A similar experiment for reach truck mast verifies the performance of the active vibration controller. By applying an active vibration controller designed for a real reach truck, the operations of the reach truck are made more efficient through the reduction of the vibration amplitude.

The Effects of Tunable Helmholtz Resonators on the Volumetric Efficiency in a Multi-cylinder Diesel Engine (가변 헬름홀츠 공진기가 다기통 디젤기관의 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.26-32
    • /
    • 2005
  • The volumetric efficiency is significantly affected by the behavior of pressure wave in induction system and exhaust pipe. By the motion of the piston, there exist pressure fluctuation in induction system which produce waves. Waves are propagated along a pipe bi-directional as they propagated through it, making compression wave and rare-faction(expansion) wave. These wave phenomena can affect to the volumetric efficiency. As a method of improvement of the volumetric efficiency, fuel economy and pollutant emission reduction particularly in low engine speeds, a side-branch additional tunable helmholtz resonator on the secondary pipe of intake system is proposed by use of their acoustic vibrations. Some of results are presented which deal with their physical phenomena for the wave action of intake system in a four-stroke three cylinders diesel engine.

  • PDF

Optimum positioning of friction support for vibration reduction in piping system (배관 진동저감 마찰 지지대 최적 위치 선정)

  • Jaeseok, Heo;Yong Hoon, Jang;Seunghun, Baek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.680-690
    • /
    • 2022
  • Vibrations in the pipe system trigger fatigue-related issues and lead to fatal other problems caused by pipe damage. There are numerous studies to analyze and reduce the cause of pipe vibration, among which a small number of studies are being conducted on pipe vibration reduction using friction supports. The study of friction supports, however, focused only on predicting and evaluating the performance of the friction supports and seldomly considered the design perspective of the install location of the supports. Therefore, this study intends to suggest the optimization process for finding the best installation region of friction support to attenuate the vibration of entire piping system. The optimal position of the friction support is predicted only by linear analysis to guarantee optimization efficiency in the design process. The designed friction support location is verified by time domain analysis.

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

A Study on the Identification of Aeroacoustic Noise and Noise Reduction for a Vacuum Cleaner (청소기의 공력소음 특성 파악 및 저소음화에 관한 연구)

  • 전완호;백승조;김창준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.460-466
    • /
    • 2003
  • The aeroacoustic characteristics and noise reduction method of a centrifugal fan for a bagless vacuum cleaner were studied. The major noise source of vacuum cleaner is the centrifugal fan. The impeller of the fan rotates over 30000 rpm and generates very high-level piercing noise. It was found that the dominant noise source of the fan is generated from the aerodynamic interaction between the highly rotating impeller and stationary diffuser. In order to reduce the high tonal sound generated from the aerodynamic interaction between the impeller and diffuser, tapered impeller was carefully designed and tested. The trailing edge of the tapered impeller was inclined and this reduces the flow interactions between the rotating impeller and the stationary diffuser because of some phase shift. The static efficiency of the new impeller is slightly lower than the conventional one. The overall SPL is reduced about 3.6 dBA. The SPL of blade passing frequency(BPF) is reduced about 6 dBA and the $2^{nd}$ BPF is reduced about 20 dBA. The vacuum cleaner with the tapered impeller has lower noise level than that of the previous impeller and the strong tonal sound was dramatically reduced.

Efficient Dynamic Response Analysis Using Substructuring Reduction Method for Discrete Linear System with Proportional and Nonproportional Damping

  • Choi, Dong-Soo;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.85-99
    • /
    • 2008
  • The dynamic response analysis for large structures using finite element method requires a large amount of computational resources. This paper presents an efficient vibration analysis procedure by combining node-based substructuring reduction method with a response analysis scheme for structures with undamped, proportional or nonproportional damping. The iterative form of substructuring reduction scheme is derived to reduce the full eigenproblem and to calculate the dynamic responses. In calculating the time response, direct integration scheme is used because it can be applied directly to the reduced model. Especially for the non proportional damping matrix, the transformation matrices defined in the displacement space are used to reduce the system. The efficiency and the effectiveness of the present method are demonstrated through the numerical examples.

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선)

  • Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

Dynamic Analysis of Building Structures with Viscoelastic Dampers (탄성감쇠를 가진 건축구조물의 동적해석)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.196-203
    • /
    • 1998
  • Viscoelastic dampers have been successfully applied to building structures for reduction of vibration induced by wind or earthquakes. But accurate estimation of responses of building structures with viscoelastic dampers is very difficult, because the properties of viscoelastic damper is dependent on temperature and frequency of vibration. For efficient control of building vibration, required damping of viscoelastic damping device need be estimated and dynamic analysis method which can estimate the response of building structure with viscoelastic damper system is indispensable. In this paper, an efficient dynamic analysis method of a building structure with viscoelastic dampers is proposed. Efficiency and accuracy of the proposed method are verified comparing analytic results with shaking table test results using reduced building models.

  • PDF