• Title/Summary/Keyword: Vibration Isolation Level

Search Result 79, Processing Time 0.024 seconds

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

Cyclic Test of Shear Wall Damping Systems (전단벽 제진시스템의 반복가력실험)

  • Ahn, Tae Sang;Kim, Young Ju;Kim, Hyung Geun;Jang, Dong Woon;Choi, Kyoung Kyu;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The objective of conventional seismic design is to ensure an acceptable safety level while avoiding catastrophic failures of structures and loss of life. Over the last many years, a large amount of research has been devoted into developing effective earthquake resistant systems in order to raise the seismic performance level of structures. The purpose of this study is to propose a new damping system, which realize not only increasing seismic performance but also easy repairing after an earthquake. The proposed damping system is slit in the bottom of wall with damping devices installed in the slit horizontally aiming to dissipate energy during earthquakes. Cyclic loading tests were conducted to investigate hysteretic behavior and energy dissipation capacity. Test results show that the proposed systems exhibit a stable hysteretic response and the energy dissipation in this system is concentrated on the damping devices.

Measurement and Control of Abnormal Sound for Refrigerator (냉장고의 이상소음에 관한 사례연구)

  • 주재만;김중래;이동현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.380-384
    • /
    • 2001
  • The household reftigerator's noise which is closely related with resident environment can hardly be evaluated its sound quality using the Korean Standards. Radiation characteristics of compressor noise consist of tonal noise in low frequency range and, or narrow band noise in high frequency range. In this study, measuring method for detecting the abnormal and low-level noise in high frequency band is presented, and control method for its reduction is proposed. After installing wall which is similar to living condition, we determined a major concerning frequency band of noise. It can be found the directivity of high frequency noise radiated from compressor by using experiment and analysis. According to isolation of noise transfer path, remarkable noise reduction is achieved.

  • PDF

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • 김경우;최경석;최현중;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.131-136
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.

  • PDF

Investigation of isolation system in recoil type weapon (주퇴작용식 발사기구의 완충특성 해석)

  • 김상균;박영필;양현석;김효준;최의중;이성배;류봉조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-108
    • /
    • 2002
  • In this study, the dynamic absorbing system for the shoulder-fired system with high-level-impact force has been investigated. for this purpose, firstly, mathematical model based on the short recoil system has been constructed. In order to design the dynamic absorbing system, parameter sensitivity analysis and parameter optimization process have been performed under constraints of moving displacement and transmitted force. In order to enhance the efficiency of energy dissipation, the stroke-dependent variable damping system has been analyzed. finally, the performance of the designed dynamic absorbing system has been evaluated by simulation with respect to the benchmark system.

  • PDF

A Study on the Acoustic Performance Indication Standards of Apartment Housing Performance Grade Indication System (공동주택 성능등급 표시제도 상의 음성능 표시기준 고찰)

  • Yang, Kwan-Seop;Kim, Kyoung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1252-1255
    • /
    • 2006
  • The government has enforced Housing Performance Grade Indication System (Article 21, Paragraph 2 of Housing Act) starting January 2006 for the purpose of giving users in hope of toying an apartment opportunities to select housing based on personal preferences by providing information on housing performance at the time of tenant recruitment announcement as well as securing desirable environment (comfort) by encouraging construction companies to build housing of the indicated performance level. The acoustic performance indication items include three items such as floor impact isolation performance(light weight impact sound, heavy weight impact sound), bathroom noise and insulation performance of boundary walls between households. This paper explains the background, the basis of creation and evaluation method focused on the acoustic environment performance helping for the developer of technique and a staff in charge of construction business who cope with this system.

  • PDF

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • Choi Gyoung-Seok;Choi Hyun-jung;Yang Kwan-Seop;Kim Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.811-818
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.

Vibration Isolation of Wave Barriers Constructed Near a Shallow Tunnel (저심도 터널과 인접한 방진벽의 지반진동 저감효과)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.567-577
    • /
    • 2015
  • This paper presents an assessment method of the ground vibration level with a combination of measured data and an analytic method. The basic concept of the method is similar to that in FRA(Federal Railway Administration) manual for detailed vibration analyses. However, going into detail, the assessment method was modified for a feasible evaluation of the vibration reduction effects of diverse types of wave barriers. The force density was evaluated in a vehicle-track interaction analysis and the transfer mobility of vibration was analyzed through a 2-D ground vibration analysis. The calculated 2-D transfer mobility was corrected to incorporate transfer characteristics of actual ground vibration by comparing the previously measured data and analysis results. Nine types of vibration reduction effects of wave barriers were analyzed on a shallow tunnel section of an urban railway where numerous civil complaints had actually been filed.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

A Study on the Development of High Stiffness Body for Suspension Performance (서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.