• Title/Summary/Keyword: Vibration Frequency

Search Result 6,241, Processing Time 0.037 seconds

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Aerodynamic characteristics of wavy splitter plate on circular cylinder

  • Liang Gao;J. Jegadeeshwaran;S. Ramaswami;S. B. M. Priya;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.375-382
    • /
    • 2023
  • The aerodynamic characteristics of a circular cylinder with a wavy splitter plate were experimentally studied, specifically the potential reduction of drag and fluctuations in drag. To study the individual effects of amplitude and wavelength, the experiments were conducted by varying one parameter at a time while holding the other one constant. To study the effect of amplitude (A), the wavelength to diameter ratio (λ/D) was fixed at 0.115 and the amplitude to diameter ratio (A/D) was varied as 0.005, 0.010, 0.015 and 0.020. Similarly, to study the effect of wavelength, A/D was fixed as 0.020 and λ/D was varied as 0.46, 0.23, 0.15 and 0.12. Analysis of the data indicated that the wavy splitter plate caused a significant reduction in both the magnitude and the fluctuation of drag. The variation of aerodynamic forces and the fluctuations with them corresponding to different Reynolds numbers were computed and the spectral aspects of fluctuating forces due to vortex shedding is analysed and effective reduction in both shedding frequency and magnitude was observed.

Vibration measurement of deformed structure of composite material: Target-free vision-based approach

  • Rana Muhammad Akram Muntazir;Abdur Rauf;Mohamed A. Khadimallah;Ikram Ahmad;Hamdi Ayed;Lubna Rasool;Muzamal Hussain;Abir Mouldi;Bazal Fatima;Sehar Asghar;Essam Mohammed Banoqitah
    • Advances in concrete construction
    • /
    • v.17 no.3
    • /
    • pp.159-165
    • /
    • 2024
  • The interaction of short range zigzag single walled carbon nanotubes CNTs based on modified elasticity model is studied in this paper. The numerical accurate results are presented. Through this model the vibrational frequency of zigzag (5, 0), (12, 0) single-walled CNTs with certain end conditions are estimated. The natural frequencies of single walled carbon nanotubes are obtained by elasticity model. It is considered for various estimation of height-to-diameter ratio of zigzag tube. This simulation is performed to quantify small scale effects. Moreover, the natural frequencies increase by increasing the height-to-diameter ratio. These frequencies are very sensitive with low height-to-diameter ratio. The feasibility and effective use of present model is explained by comparison of outputs of earlier investigations.

Quantitative Analysis of Glottal Cycles According to Frequency and Intensity Variations in Normal Speakers (발성의 강도와 주파수 변화에 따른 성대 움직임의 정량적 분석)

  • Young-Ik Son;Kyungah Lee;Jun-Sun Ryu;Chung-Hwan Baek
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.1
    • /
    • pp.5-11
    • /
    • 1997
  • To set up an objective basis for the evaluation of the stroboscopic findings, video-strobolaryngoscopic images of vocal fold vibration in 5 female and 5 male normal speakers were analyzed using an image analysis computer program called KSIP(Kay Storoboscopy Image Processing, Kay Elemetrics Corp., NJ, USA). Four consecutive vibratory cycles were compared in comfortable, louder, high-pitched /ee/ phonation for every subject. findings mostly replicated earlier studies including glottal chinks which were observed in most female speakers throughout the cycles and clear distinction between female and male speakers in their vibratory patterns as well as intensity and frequency-re-lated differences. However, there were some findings incompatible with those from previous studies which may be attributable to technical problems. This study may provide an objective basis of the stroboscopic findings such as image shape, amplitude, area, and their changes according to frequency and intensity variations. We anticipate that funker study with larger samples ran provide an objective criteria for normal vibratory characteristics of the laryngostro-boscopic findings.

  • PDF

Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가)

  • Jang, Seung-Yup;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.48-61
    • /
    • 2012
  • It is of great importance to assure the running safety, ride comfort and serviceability in designing the floating slab track for mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety, ride comfort and serviceability, and then, the behavior of train and track at the floating slab track including the transition zone to the conventional concrete slab track according to several main design variables such as system natural frequency, arrangement of spring at transition, spacing of spring isolators, damping ratio and train speed, using the dynamic analysis technique considering the train-track interaction. The results of this study demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the dynamic response such as wheel-rail interaction force, rail bending stress and rail uplift force. Hence, it is efficient to decrease the spacing of springs or to increase the spring constants at the transition to obtain the running safety and serviceability. On the other hand, the vehicle body acceleration as a measure of ride comfort is little affected by the discontinuity of the stiffness at the transition, but by the system tuning frequency; thus, to obtain the ride comfort, it is of great significance to select the appropriate system tuning frequency. In addition, the effects of damping ratio, spacing of springs and train speed on the dynamic behavior of the system have been discussed.

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Field Measurements and Review of the Curve Squeal Noise of Urban Railways (도시철도 차량 주행시 곡선스킬소음 실험 및 고찰)

  • Kim, Jae-chul;Kim, Kwanju;Lee, Junheon;Kim, Jiyong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • High frequency squeal noise can be generated when a railroad vehicle runs a sharp curved section; this noise causes environmental complaints and excessive wear on the wheel and the railroad track. In this paper, curved squeal noise experiments on a commercial railway were carried out to investigate this phenomenon. The relationship of the squeal noise pressure level, the frequency characteristics, the railway running speed, and the modal behavior of the wheel were investigated. At the same time, the lateral motion of the wheel relative to the rail was captured using a video camera; wheel movement was calculated when the noise was generated. queal noise occurred at the highest level at the inner front wheel; this phenomena is considered to be related to the lateral vibration response characteristics of the wheel. It can be seen that the magnitude of this squeal noise is not directly related to the increase in vehicle speed.

Optimal Design of Linear Viscous Damping System for Vibration Control of Adjacent Building Structures (인접구조물의 진동제어를 위한 선형감쇠시스템의 최적설계)

  • Park, Kwan-Soon;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.85-100
    • /
    • 2006
  • This paper proposes an optimal design method of linear viscous dampers for the seismic performance of two adjacent structures with different heights. Accordingly, connection method using diagonal bracing between two floors and connection method between two structures are considered, and the effectiveness of the latter method is confirmed through the comparison of the frequency response functions with respect to damping capacity. Moreover, optimal damping to minimize the response of the adjacent structures in the frequency domain is found. The sensitivity of natural frequency and modal damping according to the damper capacity at each floor is obtained for the optimally designed system. From the sensitivity analysis, the modal damping is evaluated to be very sensitive to the damper installed at higher floor. Therefore, sensitivity-based damping distribution method is proposed. Diagonal bracing connection method, uniform distribution method and sensitivity-based distribution method are compared to each other in terms of seismic performance. The comparative results demonstrate that the proposed method is an effective seismic design method for the adjacent structures.

Development of Control Algorithms Considering the Effect of a Control Sampling Period on the Total Amount of Switching for a Switched System (컨트롤 샘플링 주기가 스위칭 시스템의 결합-분리 횟수에 미치는 영향을 고려한 제어 알고리듬 개발)

  • Joung, Jin-Wook;Chung, Lan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.67-76
    • /
    • 2009
  • Recently, the active interaction control (AIC) system was proposed as a semi-active control system. The AIC system consists of a primary structure and an auxiliary structure. The objective of the AIC system is to control the response of the primary structure through engagement and disengagement between the primary and auxiliary structures. Previous switching control algorithms have been shown to be effective in reducing the response of the primary structure. However, they have the main drawback of requiring an excessive engagement-disengagement frequency and high interaction force. In this paper, the regions in which the switching is activated and the regions in which the switching is deactivated are described separately, to effectively determine the engagement or the disengagement. The general relationship between the switching regions and the deactivated switching regions selected according to the engagement-disengagement conditions is described within the newly-developed comprehensive switching framework. The proposed engagement-disengagement conditions are designed within a comprehensive switching framework, to reduce engagement-disengagement frequency and interaction force. Furthermore, the effect of a control sampling period on the AIC system is explained in terms of the engagement-disengagement frequency. The effectiveness of the proposed algorithms and the effect of the control sampling period are considered for a single degree of freedom model under free vibration. It is observed that increasing the duration of stay by using a large control sampling period prevents the AIC system from activating the possible chance of switching. The proposed algorithms are shown to be effective, both in restricting ineffective switching and in reducing interaction force.