• Title/Summary/Keyword: Vibration Environmental Test

Search Result 313, Processing Time 0.033 seconds

A Study on the Structural Dynamic Modification of Sub-structure of Clean Room Considering Vibration Criteria (반도체 초정밀장비의 진동허용규제치를 고려한 지지구조의 동특성 개선에 관한 연구)

  • 손성완;이홍기;백재호
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.25-30
    • /
    • 2003
  • In the case of a vibration sensitive equipment, it require a vibration free environment to provide its proper function. Especially, lithography and inspection device, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved Giga Class semi conductor wafers. This high technology equipments require very strict environmental vibration criteria in proportion to the accuracy of the manufacturing. In this paper, the dynamic analysis and modal test were performed to evaluate the dynamic properties of the constructing clean room structure. Based on these results, a structural dynamic modification(SDM) were required to satisfiy the vibration allowable limit for pression machine. Therefore, in order to improve the dynamic stiffness of clean room structure, the VSD system which can control the force applied on structure, were adopted and its utility were proved from dynamic test results of the improved structure after a modification work.

  • PDF

Environmental Tests of Kick Motor Safety and Arming Device (킥모터 점화안전장치 환경시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.703-704
    • /
    • 2010
  • The environmental tests simulating the flight condition have been performed to manufacture the high reliable safety and arming device(SAD). A motor assay in preliminary design was reinforced with the structure to resist severe vibration and shock environment, and the design change had been verified by conducting the principal environmental test again.

  • PDF

Evaluation of Cable Tension Forces Using Vibration Method for a Cable-stayed Bridge under Construction (진동법을 이용한 사장교의 시공 중 장력 평가)

  • Cho, Soojin;Yun, Chung-Bang;Sim, Sung-Han
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.38-44
    • /
    • 2014
  • When a cable-stayed bridge is under construction, the cable tension that changes according to the construction phase is the index indicating the proper construction management. In this study, the vibration method using the least-square estimation has been implemented to monitor changing tensions of two multi-strand cables of a cable-stayed bridge under construction. The test bridge is Hwamyung Bridge in Korea with a prestressed concrete box girder. The field tests are executed during the second tensioning stage just after the installation of the key segment. The tensions of two cables are measured before and after the tensioning and 5 days later (i.e., after finishing the tensioning of all cables). The accuracy of the estimated tensions by the vibration method has been improved by employing proper effective lengths of the cables. The measured tensions are compared with the result of the lift-off tests and design tensions. The vibration method shows very good performance in monitoring the changing tensions according to the construction phase with minimal error.

Vibration Characteristics of Corrugated Fiberboard Boxes for Packages of Pears (배 골판지 포장상자의 진동특성)

  • 김만수;정현모
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 2002
  • During handling unitized products, they are subjected to a variety of environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization of pallets has been resulted in a reduction of the shock hazards. This has caused an increasing interest in research focused on vibration caused dam age. Damage to the product by the vibration most often occurs when a product or a product component has a natural frequency that falls within the range of the forcing frequencies of the particular mode of transportation being used. Transportation vibration is also a major cause of fruit and vegetable quality loss due to mechanical damage. This study was conducted to determine the vibration characteristics of the corrugated fiberboard bones for packages of pears, and to investigate the degree of vibration injury of the pears in the boxes during the simulated transportation environment. The vibration tests were performed on an electrohydraulic vibration exciter. The input acceleration to exciter was fixed at 0.25 G for a single container resonance test and 0.5 G for the vertical stacked container over the frequency range from 3 to 100 Hz. Function generator (HP-33120A) was connected by wire to the vibration exciter for controlling the input acceleration at a continuous logarithmic sweep rate of 1.0 octave per min. The peak frequency and acceleration on the single box test were 22.02 Hz, 1.5425 G respectively, and these values on the vertical stacked boxes were observed from the bottom box 19.02, 18.14, 16.62 and 15.40 Hz and 2.2987, 3.7654. 5.6087, and 7.9582 G, respectively. The pear in the bottom box had a slightly higher damage level than the fruit packed in the other stacked boxes. It is desirable that the package and transportation system has to be so designed that 15∼20 Hz frequency will not occur during the transportation environment.

Experimental investigation of an active mass damper system with time delay control algorithm

  • Jang, Dong-Doo;Park, Jeongsu;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.863-879
    • /
    • 2015
  • This paper experimentally investigates the effectiveness and applicability of the time delay control (TDC) algorithm, which is simple and robust to unknown system dynamics and disturbance, for an active mass damper (AMD) system to mitigate the excessive vibration of a building structure. To this end, the theoretical background including the mathematical formulation of the control system is first described; and then, a thorough experimental study using a shaking table system with a small-scale three-story building structural model is conducted. In the experimental tests, the performance of the proposed control system is examined by comparing its structural responses with those of the uncontrolled system in the free vibration and forced vibration cases. It is clearly verified from the test results that the TDC algorithm embedded AMD system can effectively reduce the structural response of the building structure.

The Development of Filled Material for Reduction of Train Vibration (열차 진동 저감을 위한 채움재 개발)

  • 장강석;권형오;김두훈;이일화;황선근
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.30-38
    • /
    • 1998
  • Nowadays, the environmental vibration criteria has been severely restricted from the viewpoint of recipient. The vibration created by urban transit systems can be an important source of community discontent, and can have influence on high technology equipments. This has led to a desire of transit system operators to reduce vibration and to minimize community exposure to vibration. Recent research in this area has significantly increased for transit system engineers to reduce vibration. Unlike other material, soil has a complicated characteristic and it is very difficult to prevent vibration from transmitting. Generally, the trench can use to breaking propagation of vibration on passing way but needs much too maintenance. Therefore, the filled materials for trench had successfully developed and the characteristic test for the filled material had conducted during this term. Finally, we had executed analyses of real characteristic through the propagation test of ground vibration.

  • PDF

Prediction of Blasting-induced Vibration at Sintanjin Area, Daejeonusing Borehole Test Blasting (시추공 시험발파를 이용한 대전 신탄진 지역의 발파진동 예측)

  • Lee, Chung-Won;Park, Sung-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • Problems on vibration due to blasting for infrastructure development are getting important because of a civil appeal. Blasting-induced vibration is representative construction pollution, hence, it is possible that a number of environmental damages occur. In this study, borehole test blasting was conducted at Sintanjin area, Daejeon and square root equation with 95% confidence level was proposed for prediction of blasting-induced vibration. The vibration value predicted from this equation was more conservatively evaluated than the values predicted from U.S. Department of Interior, Bureau of Mines (USBM) and Nippon Oil & Fats Co., Ltd. (NOF) equations. Therefore, the proposed equation in this study seems to contribute for safety blast design. However, for optimal blast design, inducing equation for prediction of blasting-induced vibration through the identical test blasting with field construction such as rock slope blasting would be required.

Tracked Vehicle Vibration Environmental Comparison using Fatigue Damage Spectrum (Fatigue Damage Spectrum을 이용한 궤도차량의 진동환경 비교)

  • 김재하;최병민;우호길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.191-197
    • /
    • 2000
  • This paper provides the test results of tracked vehicle at each driving condition and life cycle. Fatigue Damage Spectrum(FDS) has evaluated with the Power Spectrum Density(PSD) and the life time of equipment. Finally, provisional vibration qualification test level is evaluated.

  • PDF

Development of Environmental Test Specifications for Aircraft Using Measured Vibration Data (항공기 실측 진동 데이터를 이용한 환경시험 규격 생성 연구)

  • Kim, Choonghyun;Song, Keehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.302-308
    • /
    • 2021
  • Developers generally use test standards suggested by military standards such as MIL-STD-810G when performing vibration tests in the materiel development. However, according to MIL-STD-810G, it is recommended to test by tailoring the test standard suitable for the developed materiel, and it is specified to apply the suggested test standard only when there is difficulty in tailoring. In addition, the test standards presented by MIL-STD-810G are standards created under operating conditions different from the actual operating environment of each developed materiel, so the test according to this standard may be excessive or understated. Therefore, the developer must create an appropriate vibration test standard for the developed materiel as similar to the operating conditions as possible. In this paper, the procedure for creating the functional test standard and durability test standard suitable for the operating environment of the equipment to be mounted on the propeller aircraft under development is described, and the created standard is introduced.