• 제목/요약/키워드: Vibration Control

검색결과 4,084건 처리시간 0.032초

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

이산화탄소 해양격리 심해주입시스템의 초기설계 (Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration)

  • 최종수;홍섭;김형우;여태경
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교 (Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System)

  • 김도태;장중걸
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

ER 유체를 이용한 반능동 현가장치용 고전압 전원장치의 개발 (Development of High Voltage Power Supply for Semi-Active Suspension System Using ER Fluids)

  • 정세교;신휘범
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.453-464
    • /
    • 2002
  • ER 유체(Electrorheological fluid)는 인가 전계에 따라 유체의 점도(Viscosity)와 댐핑력(Damping force)이 변화하는 혼합물질이며 반능동 현가장치, 고속 클러치, 진동 흡수장치 등에 적용되고 있다. ER 유체의 응용을 위해서는 강한 전계를 인가해 줄 수 있는 고전압 가변 전원장치가 필요하다. 본 논문에서는 반능동 현가장치에 적용하기 위한 전원장치의 개발에 대하여 기술하였다. ER 유체의 전기적 특성, 고전압 전원장치의 요구조건, 전원장치의 설계 및 제작에 대하여 설명하였으며 최종적으로 실험을 통하여 개발된 고전압 전원장치가 ER 유체 응용에 적합함을 검증하였다.

반응표면법을 이용한 6/4극 구조를 갖는 스위치드 릴럭턴스 모터의 토크 리플 저감을 위한 형상 최적설계 (Shape Optimization of a Switched Reluctance Motor Having 6/4 Pole Structure for the Reduction of Torque Ripple Using Response Surface Methodology)

  • 최용권;윤희성;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.608-616
    • /
    • 2006
  • Recently, a switched reluctance motor is widely used in various industries because it has many advantages such as a simple structure, robustness, less maintenance, high torque/weight ratio, and easy speed control over other types of motors. However, a switched reluctance motor inherently produces acoustic noise and vibration caused by torque ripple. Applications of these motors where silent operation is desirable have thus been limited. In this paper, a new stator pole face having a non-uniform air-gap and a pole shoe attached to the lateral face of the rotor pole are suggested in order to minimize torque ripple. The effects of each design parameter are validated using a time-stepping finite element method. The parameters are optimized by utilizing response surface method (RSM) combined with (1+1) evolution strategy. The result shows that the optimized shape gives higher average torque and drastically reduced torque ripple.

저압 초음파 분무 공정을 이용한 γ-Fe2O3 나노입자의 합성 (Synthesis of γ-Fe2O3 Nanoparticles by Low-pressure Ultrasonic Spraying)

  • 이창우;김순길;좌용호;이재성
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.19-25
    • /
    • 2007
  • This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure ${\gamma}-Fe_2O_3$ nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure ${\gamma}-Fe_2O_3$ nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl ($Fe(CO)_{5}$) in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over $800^{\circ}C$. Also magnetic properties, coercivity ($H_c$) and saturation magnetization ($M_s$) were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).

100 kWh급 초전도 베어링의 지름방향 준정적 특성 (Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing)

  • 정세용;박병준;한영희;박병철;이정필;한상철
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

가압경수로 원자로용기와 제어봉 구동장치의 동적 상호작용 (Dynamic Interactions between the Reactor Vessel and the CEDM of the Pressurized Water Reactor)

  • ;김천욱
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.837-845
    • /
    • 1997
  • 본 연구에서는 가압경수로의 핵심부품인 원자로용기와 제어봉구동장치사이의 동적 상호작용의 영향을 평가하였다. 원자로용기와 제어봉구동장치를 단순 수학모델화하여 단순조화 기저가진에 대한 정상상태 주파수응답을 구하고, 응답을 최소화할 수 있는 설계변수를 제시하였다. 단순 수학모델의 적합성을 입증하기 위하여 원자로용기와 제어봉구동장치의 유한요소 모델에 대하여 ANSYS 코드를 사용하여 해석한 후 정상상태응답을 수학모델로 구한 응답과 비교하였다. 또한 기존설계와 최적화설계에 대하여 지진사고 시간이력해석을 각각 수행함으로써, 본 연구에서 제시한 최적설계변수가 내진설계에 대하여도 적용할 수 있음을 확인하였다.

  • PDF

Dynamic Characterization of Sub-Scaled Building-Model Using Novel Optical Fiber Accelerometer System

  • Kim, Dae-Hyun
    • 비파괴검사학회지
    • /
    • 제31권6호
    • /
    • pp.601-608
    • /
    • 2011
  • This paper presents the damage assessment of a building structure by using a novel optical fiber accelerometer system. Especially, a sub-scaled building model is designed and manufactured to check up the feasibility of the optical fiber accelerometer for structural health monitoring. The novel accelerometer exploits the moir$\acute{e}$ fringe optical phenomenon and two pairs of optical fibers to measure the displacement with a high accuracy, and furthermore a pendulum to convert the displacement into acceleration. A prototype of optical fiber accelerometer system has been successfully developed that consists of a sensor head, a control unit and a signal processing unit. The building model is also designed as a 4-story building with a rectangular shape of $200{\times}300$ mm of edges. Each floor is connected to the next ones by 6 steel columns which are threaded rods. Basically, a random vibration test of the building model is done with a shaker and all of acceleration data is successfully measured at the assigned points by the optical fiber accelerometer. The experiments are repeated in the undamaged state and the damaged state. The comparison of dynamic parameters including the natural frequencies and the eigenvectors is successfully carried out. Finally, the optical fiber accelerometer is proven to be prospective to evaluate dynamic characteristics of a building structure for the damage assessment.

피에조 인젝터의 모델링 및 분사율의 추정 (Modeling and Injection Rate Estimation of a Piezo Injector for CRDI Diesel Engines)

  • 김선우;정남훈;선우명호
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.93-100
    • /
    • 2005
  • Stringent emission regulations and increasing demands on reductions of noise and vibration of common rail direct injection (CRDI) diesel engines lead to the advent of piezo-actuated injectors. Compared with solenoid-actuated injectors, piezo-actuated injectors generate greater force and give faster response time, resulting in more accurate and faster injections. The accurate and fast response of an injector can offer an opportunity to control the combustion process and pollutant formation. In this study, the mathematical model of a piezo-actuated injector is developed. An estimator of the injection rate of the piezo-actuated injector is designed based on this model. The sliding mode theory is applied to the estimator design in order to overcome model uncertainties. The injector model and the estimator are verified by the injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection timing and the injection rate of the piezo-actuated injector.