• Title/Summary/Keyword: Vibration Axis

Search Result 549, Processing Time 0.03 seconds

The Geometrical Analysis of the Response and the Stiffness Matrix of a Wire Type Actuator in the Optical Disc Drive (와이어 지지형 광픽업 액츄에이터의 강성행렬과 기하학적 응답해석)

  • 단병주;최용제
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.984-990
    • /
    • 1999
  • This paper presents the geometrical methodology to decouple the vibration modes of an elastically supported single rigid body in three-dimensional space. It is shown that the vibration modes can be decoupled by placing the center of elasticity at suitable locations and thereby yielding the plane(s) of symmetry for the given stiffness matrix. The developed methodology has been applied to the actuator supported by the 4-wire suspensions in optical discs, which has one plane of symmetry. For this numerical example, the axes of vibrations have been computed and illustrated with the natural frequencies. The forced response at the objective lens is represented and its geometrical interpretation has been explained as the mutual moment between the axis of vibration and the applied wrench times the line coordinates of the axis of vibration.

  • PDF

Active Vibration Suppression Using Sweeping Damping Controller (움직이는 감쇠제어기를 이용한 능동진동제어)

  • Bae, Byung-Chan;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.293-296
    • /
    • 2005
  • This paper is concerned with the sweeping damping controller for beam. The active damping characteristics can be enhanced by moving the damper along the longitudinal axis. In this paper, the equation of motion for a beam including a sweeping damping controller is derived and its stability is proved by using Lyapunov stability theorem. It is found from the theoretical study that the sweeping damping controller can enhance the active damping characteristics, so that a single damper can suppress all the vibration modes of the beam. To demonstrate the concept of the sweeping damping control, the eddy current damper was applied to a cantilever, where the eddy current damping can move along the axis. The experimental result shows that the sweeping eddy current damper Is an effective device for vibration suppression.

  • PDF

Experimental Study of Engine Mount Optimization to Improve NVH Quality (NVH 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구)

  • 이준용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.330-337
    • /
    • 1996
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that considered the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Rool Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have a good NVH performance.

  • PDF

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Oh, Min-Woo;Kim, Dong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

3-D Nano Topology Measurement using VCM (VCM(voice coil motor)를 이용한 3차원 나노 형상 측정 시스템)

  • Jung, Jong-Kyu;Youm, Woo-Sub;Park, Kiy-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1439-1443
    • /
    • 2007
  • In this paper, vibration reduction techniques of a voice coil motor (VCM) actuator are presented for AFM imaging system. The damping coefficient of the actuator driven by VCM with a flexure hinge is quite low and it cause the about 30dB peak amplitude response at the resonance frequency. To decrease this peak response, we design and apply elliptical band-stop filters to xy and z axis VCM actuator. Frequency response of each actuator with filter is measured to verify the effect of the filters. As a sensor, capacitive sensor is used. Vibration reduction rate of the xy actuator with the filter is also measured while real AFM scanning condition. As another method, closed loop control with the capacitive sensor is applied to the xy axis actuator to add an electrical damping effect and vibration reduction rate measured. These vibration reduction rates with each method are compared. In the case of z axis actuator, the frequency response of force (gap) control loop is measured. For comparison, the frequency response using a conventional PID controller is also obtained. Finally, the AFM image of a standard grid sample is measured with the designed controller to analyze the effect in the AFM imaging.

  • PDF

Study on Structure Design of High-Stiffness for 5 - Axis Machining Center (5축 공작기계의 고강성 구조설계에 관한 연구)

  • Hong, Jong-Pil;Gong, Byeong-Chae;Choi, Sung-Dae;Choi, Hyun-Jin;Lee, Dal-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • This study covers the optimum design of the 5-axis machine tool. In addition, the intelligent control secures structural stability through the optimum design of the structure of the 5-axis machine center, main spindle, and the tilting index table. The big requirement, like above, ultimately leads to speed-up operation. And this is inevitable to understand the vibration phenomenon and its related mechanical phenomenon in terms of productivity and its accuracy. In general, the productivity is correlated with the operation speed and it has become bigger by its vibration scale and the operation speed so far. Vibration phenomenon and its heat-transformation of the machine is naturally occurred during the operation. If these entire machinery phenomenons are interpreted through the constructive understanding and the interpretation of the naturally produced vibration and heat-transformation, it would be very useful to improve the rapidity and its stability of the machine operation indeed. In this dissertation, the problems of structure through heating, stability, dynamic aspect and safety about intelligent 5-wheel machine tool are discovered to examine. All these discoveries are applied to the structure in order to enhance the density of it. It aims to improve the stability.

Development of Vibration Analysis Program for Anti-resonance Design of Vertical-axis Tidal Current Turbine (조류발전용 수직축 터빈의 공진 회피 설계를 위한 프로그램 개발)

  • Bae, Jae-Han;Seong, Hye-Min;Cho, Dae-Seung;Kim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.336-341
    • /
    • 2012
  • The vertical-axis tidal current turbine (VAT) consisting of blades, struts to support blades, shaft, generator and so forth requires anti-resonance design against fluid fluctuation forces generated on blades to ensure its stable operation. In this study, a free vibration analysis program based on the finite element method is developed for efficient anti-resonance design of VAT in the preliminary design stage. In the finite element modeling, the VAT structure components are regarded as beam elements. Added masses due to the fluid and structure interaction of VAT evaluated by empirical formulas are considered as lumped mass elements. In addition, input parameters required for the analysis can be automatically prepared from the principal dimensions of VAT to make anti-resonance design more convenient. The validity of applied methods is verified by the comparison of the numerical results obtained from MSC/Nastran and the developed program for two VAT models.

  • PDF

The Vibration Suppression using Reactive Power Compensator for Speed Control of Parallel Connected Dual Fan Motors fed by a Single Inverter (단일 인버터 기반 에어컨용 실외기 팬 모터 병렬운전에서의 무효전력보상기를 이용한 맥동저감 기법)

  • Yun, Chul;Kwon, Woo-Hyen;Cho, Nae-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2008-2013
    • /
    • 2016
  • This paper proposes analysis and suppression method for reactive power vibration of the slave motor caused by back-EMF mismatch between the master and the slave motor and stator resistance during middle-low speed operation. The master and slave motors are parallel connected dual SPMSMs(Surface mounted Permanent Magnet Synchronous Motors) fed by a single inverter. To suppress vibration of reactive power, RPC(Reactive Power Compensator) proposed in this paper analyzes flux-axis current vibration of the slave motor that occurs in middle-low speed operation using a mathematical model of the fan motor. And RPC adds vibration components detected from flux-axis current of the slave motor to flux-axis current of the master motor. The results of experiment conducted verify the efficacy of the proposed method.

Vibration Measurement and Analysis During Fruits Distribution for Optimum Packaging Design (적정 포장설계를 위한 과실의 유통 중 진동의 계측 및 분석)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • The freight vehicle is mostly used to transport the fruit. Shock and impact generated by the freight vehicle may give serious damage to fruits hence to reduce the fruits damage, the optimum packaging design during transportation by vehicle is required. In order to design the packaging system for fruit transportation optimally, the comprehension of characteristic for vibration and shock acting on vehicles under various road conditions and loading methods is required. This research was performed to analyze the shock characteristics, acceleration level and power spectral density (PSD) of the fruit transportation vehicles under several travel roads and positions. The vibration signal was measured and analyzed at the transportation vehicle operating on the road of three different surface conditions. The maximum acceleration was measured at the rear-end of the vehicle, and the acceleration in the direction of up-and-down (z-axis) was much greater than those in the directions of back-and-forth (x-axis) or right-and-left (y-axis). The peak acceleration in the direction of up-and-down (z-axis) at the vehicle driving on the expressway, the local road paved with concrete, and unpaved local road were 5.3621 G, 8.232 G, and 14.162 G respectively. PSD at 2.44 Hz showed maximum value at all road conditions. The maximum values of PSD on the expressway, a local road paved with concrete, and unpaved local road were 0.0075222 $G^2/Hz$, 0.058655 $G^2/Hz$, and 0.24598 $G^2/Hz$ respectively. The value of PSD decreased with an increase of the vibration frequency of the transportation vehicle. In most cases, the vibration frequency was below 20 Hz during transportation.

Micro-vibration Test on a Two-axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Yong, Ki-Lyuk;Choi, Hong-Taek;Park, Gee-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1042-1048
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting image jitter response of a satellite. The gimbal system comprises azimuth stage and elevation stage, and these pointing mechanism can be rotated by stepping motors about its azimuth and elevation axes simultaneously. Because of the complex and coupled dynamic motion of the gimbal system, its moment of inertia and structural modes can be changed according to the system configuration, and thus the gimbal system generates complicated and non-linear disturbance characteristics. In order to improve the jitter response of a spacecraft, it is an indispensable process to reduce the micro-vibration disturbance level of the antenna system. In the present research, a 2-axis gimbal system was manufactured and then its micro-vibration test was performed in terms of two types of stepping motors(2-phase and 5-phase). The test results show that the disturbance level of the gimbal system can be reduced by replacing the 2-phase stepping motor with the 5-phase one, and the average disturbance attenuation ratio is 56 % in peak level and 48 % in standard deviation level. The experimental results confirm that it is an efficient jitter reduction method to adopt a high-phase stepping motor.