• Title/Summary/Keyword: Vibration %26 Noise

Search Result 216, Processing Time 0.024 seconds

Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates (임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법)

  • Kang, Sang-wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.

A Study on Interior Noise Contribution Analysis of Trains based on OTPA Method (OTPA방법을 이용한 철도차량 실내 소음 기여도 분석 연구)

  • Jung, Jae-Deok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Woung;Noh, Hee-Min;Kim, Jun-Kon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-103
    • /
    • 2016
  • The sensitivity of interior noise that the passengers perceive is comparatively high in the train, and structure-borne and air-borne types of noises come into the train. In this paper, to analyze contributions of these noise sources operational transfer path analysis(OTPA) is used. OTPA has some advantages of executing the contribution rates of several sources simultaneously, and in this work, 29 points are measured while running. Transfer functions between reference measurement points and response measurement points are calculated by the singular value decomposition(SVD) and Principal component analysis(PCA) method, and the frequency characteristics of the noise source are successfully derived. Also the interior noise is predicted and compared with measurement data to show the reliability.

Study on a Development of the Prediction Equation of the Wind Power Plant Noise (풍력발전소 소음 영향 예측식 개발에 관한 연구)

  • Gu, Jinhoi;Lee, Jaewon;Lee, Woo Seok;Jung, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • The wind power plants were installed in many places because of the low climate changing effects since 2000. Generally, the wind power plants located in the seaside and the mountainous area and the heights of the windmills are about 40 m~140 m above the ground level. So the noises emitted from the wind power plants propagate far away compared with other environment noise sources like trains and cars noise. Because of these reasons, the noise emitted from the wind power plant is easy to cause the additional social problems like as noise complaints. Under the situation, the ministry of environment has established the guideline to evaluate the environmental effects for the wind power plant. According to the guideline, the noise of the wind power plant has to meet 55 dB(A) at daytime and 45 dB(A) at night in the residential area, which is regulated in the noise and vibration management law. But, it is difficult to estimate the noise emitted from the wind power plant because of the absence of the prediction model of the wind power plant noise. Therefore, the noise prediction model for wind power plants using the regression analysis method is developed in this study. For the development of the model, the sound pressure levels of the wind power plants in Jeju island are measured and the correlations between the sound pressure levels are analyzed. Finally, the prediction equation of the wind power plant noise using by regression analysis method derived. The prediction equation for the wind power plant noise proposed in this study can be useful to evaluate the environmental effects in any wind power plant development district.

The Effect of the Number of Vibration Modes on the Application of the Location Template Matching(LTM) Method (Location Template Matching(LTM) 방법을 적용함에 있어서 진동 모드 수의 영향)

  • Shin, Kihong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.172-178
    • /
    • 2016
  • The location template matching (LTM) method is a technique of identifying an impact location on a structure, and is often applied to structural health monitoring and large scale human-computer interface (HCI) systems. The LTM method utilizes a certain measure of similarity between two time signals. The correlation coefficient is most widely used for this purpose, and the group delay based method is recently proposed to improve the accuracy of finding the best matching pair of signals. In practice, one of key essential consideration for implementing the LTM method is to guarantee that a sufficient number of vibration modes must be contained in the measured signal, and yet the lower sampling rate is needed for a real-time implementation. In this paper, the properties of correlation coefficient and group delay with respect to the number of vibration modes are investigated. A few important results are obtained through extensive computer simulations and experiments. If the number of vibration modes contained in the measured signal is more than four it is sufficient for the correlation based LTM method, while the group delay based LTM method requires smaller number of vibration modes.

Turbulent-induced Noise of 2-dimensional Sonar Dome Shaped Structure (2차원 소나돔 형상 구조물의 난류유동소음 해석)

  • Choi, Yo-Seb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug;Jung, Chul-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • The latest research has shown that the turbulence-induced noise is important in total characteristics of flow noise. Also, turbulence-induced noise have a significant influence for performance of sonar dome. In this paper, Flow analysis is performed on vicinity of the sonar dome model using Large Eddy Simulation method. Also, direct method that extracts perturbational sound pressure, FW-H method without turbulence-induced noise and permeable FW-H method that is able to calculate turbulence- induced noise were compared in order to show turbulence effect.

Active Control of Noise Transmitted through Ventilation Openings of the Machinery Room of Refrigerator (무부하 압축기에 의한 냉장고 기계실 소음의 능동제어)

  • Koo, Jung Mo;Jeong, Weui Bong;Kim, Tae Hoon;Hong, Chinsuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2016
  • The active control of noise generated by the compressor and transmitted out of the machine room through the windows is implemented based on the FIR filter. The machine room contains most of noise sources of electric home appliances, air-conditioners and refrigerators, for example. To actively reduce the noise from the machinery room. In this paper, the transfer function of the controller for minimization of the acoustic power transmitted through the windows is mathematically formulated. The transfer functions required for implementation of the active controller are the measured. The measurements are conducted in this initial stage under the operation of the compressor with no load. For improvement of the reliability of the transfer function of the compressor to the acoustic power, additional operational measurements are performed. The real time controller is implemented based on the FIR filter using the measured transfer functions and the performance of the active controller is estimated. Control performance is measured about 3 dB ~ 10 dB in reduction of the sound power at the peaks of the compressor noise.

Radiated Noise Analysis of Marine Diesel Engine from Structural Vibration (선박용 디젤 엔진의 구조진동에 의한 방사소음 해석)

  • Kim, Dae-Hwan;Jeong, Weui-Bong;Park, Jeong-Geun;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This paper summarizes a design procedure of radiated noise from engine blocks of marine engines. This air-borne noise is one of the significant noise contributors including the aeroacoustic noise due to intake and exhaust and the re-radiation due to structure-borne noise. Excitation forces by engine operations are evaluated taking into account the power generation mechanism from the burning process to the subsequence motion of internal parts; piston, connecting rod, and crank shaft. The acoustic transfer vector method is incorporated to effectively simulate the radiated noise field under the various operation conditions. A contribution analysis for the various excitations to the radiated noise is conducted. It is found that the firing pressure is the main source of the radiated noise, and so the structure of the cylinder can be modified to significantly reduce the radiated noise from the engine block.

Vibration Characteristics Analysis of High Speed Rotary Bell Cup with Different Shapes and Dimensions (형상 및 치수 변화에 따른 고속 회전 벨 컵의 진동 특성 해석)

  • Park, Jiong-Min;Choi, Seung-Bok;Sohn, Jung Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.857-864
    • /
    • 2016
  • In the present work, vibration analysis of high speed rotary bell cup model for paint atomizer application is carried out through numerical simulation. At first, eight bell cup models, considering four different cup shapes and two different cup diameters, are proposed and corresponding dynamic characteristics are investigated. To evaluate the operating stability, critical speed analysis is conducted using Campbell diagram and separation margin between operating speed and critical speed is identified. Unbalance vibration responses are also studied according to operating speed and balancing quality grade of G. Finally, the stability and adequacy of the proposed bell cup models are discussed for field application.

Elastic Modulus Extraction of Wire Mesh for Vibration Mount Development (방진마운트 개발을 위한 와이어 메쉬 탄성계수 추출)

  • Kim, Tae-Yeon;Shin, Yun-ho;Moon, S.J.;Jung, B.C.;Lee, T.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.806-813
    • /
    • 2016
  • To alleviate the vibration problem or to satisfy the required criteria for manifesting the guaranteed performance of precise equipment, various vibration isolation materials or apparatus, such as viscoelastic material, air and coil spring, have been developed and applied. Among them, a wire mesh material is regarded as one of the good candidate for reducing the vibration in terms of moderate material price, easy shape machining and long life cycle without the property deterioration induced by the aging or environmental effects. In this paper, prior to wire mesh isolator design, the static and dynamic elastic modulus of wire mesh materials are extracted from the experiment by the simple shaped cylindrical specimens and their characteristics for applying to vibration isolator design are examined. The simple shaped specimens were made as considering the design parameters of a wire mesh mount; i.e. the density, wire diameter and wire mesh slope, and the sensitivity analysis were also performed from a view point of the extracted elastic modulus.

Analysis and Estimation of Vibration Characteristics of a Reciprocal Compressor with Variable Rotating Speed (가변속 압축기의 진동특성 분석 및 예측)

  • Jung, Byung-Kyoo;Lee, Yun-Gon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2016
  • This paper deals with the vibration characteristics of a reciprocal compressor with variable rotating speed according to the change of operating frequencies. The equation of motion and exciting force of the equivalent compressor model were formulated, and the vibration responses at operating frequencies were predicted. The predicted results were compared with the measured results. Although the predicted results had little errors in operating condition, it represented good agreement in general. Especially, the natural frequencies obtained from the measurement were similar to those calculated by the eigenvalue problem of the equivalent model. The procedure and results in this paper can be utilized to the identification of the vibration characteristics of new compressor models.