• Title/Summary/Keyword: Viable cell number

Search Result 272, Processing Time 0.029 seconds

Optimization of supplemented whey medium composition for maximum viable cell count of L. crispatus KLB 46

  • Nam, Bo-Hyeon;Jang, Jeong-Eun;Kim, Seung-Cheol;Yun, Hyeon-Sik;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.372-375
    • /
    • 2000
  • Lactobacillus cristatus KLB 46 isolated from Korean woman was grown on supplemented whey medium and medium compositions were optimized for maximum viable cell count. Among the nitrogen sources tested, beef extract yielded the highest viable cell number. When corn steep liquor was applied as an additional nitrogen source, the viable cell number was highest $(3.11{\times}10^9\;CFU/ml)$ in the medium containing 50g/ l corn steep liquor and 10g/ l beef extract. The highest viable cell $count(5.00{\times}10^9\;CFU/ml)$ was obtained from the supplemented whey medium that contains beef extract(10g/ l ), corn steep liquor(50g/ l ), tween 80(0.1%, v/v) and trace amounts of sodium acetate(5g/ l ), dipotassium phosphate(2g/ l ), magnesium sulfate(0.1g/ l ), and manganese sulfate (0.05g/ l ).

  • PDF

Measurement of Viable Cell Number in Mixed Culture Based on Microbial Respiration Rate (미생물 호흡속도에 기초한 혼합배양중의 생균수 측정)

  • Veljkoic, V.B;;C.R.Engler
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.687-692
    • /
    • 1992
  • A simple method to determine viable cell numbers of each species in mixed culture was developed. The oxygen uptake rate (OUR) equals to the product of the specific OUR and the size of the microbial population. In a mixed culture, the OUR is a result of the respiration activities of each sub-population. The OUR was determined from the slope of the linear relationship between time and the decrease of dissolved oxygen concentration when aeration was stopped. The specific OUR was calculated from the slope of the viable cell number versus OUR curve. These values for C. lusitaniae at 20 and $30^{\circ}C$ were $1.36{\times}10^{-9}$ and $3.90{\times}10^{-9}$ and those for P tannoPhilus at 20 and $30^{\circ}C$ were $0.59{\times}10^{-9}$ and $1.86{\times}10^{-9}$ [(%/s)/(cells/ml)J. respectively. Using these values, viable cell numbers were calculated after the OURs of mixed culture at two temperatures were measured. A good agreement between the viable cell numbers determined by this method and by plate count was obtained.

  • PDF

Production of Bacillus thuringiensis Spore Using an Industrial Medium (산업용 배지를 이용한 Bacillus thuringiensis의 포지생산)

  • 최성호;강석권;유연우
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.644-648
    • /
    • 1998
  • In the production of a low cost bacterial insecticide, it is important to produce a high spore concentration using low price substrates. Experiments were carried out to investigate the effects of the addition of mineral salts and glucose, and of dissolved oxygen concentration on the cell growth and spore formation of Bacillus thuringiensis var aizawai using a cheap wheat and soybean meal in the batch culture. The maximum viable cell number was 1.2${\times}$109 CFU/mL at 12 hr culture and spore yield was 54.2% at 74 hr culture using an industrial medium containing 20 g/L wheat meal and 30 g/L soybean meal under 1.0 vvm aeration and 200 rpm agitation. The cell growth and the spore formation were not enhanced by the addition of mineral salts in industrial medium, whereas th addition of 10g/L glucose decreased the cell growth and spore formation. We could obtain a maximum viable cell number of 2.2${\times}$109 CFU/mL and spore number of 1.9${\times}$109 CFU/mL at the dissolved oxygen concentration of 60% of saturation. The spore concentration was enhanced approximately by 2 times as compared to the dissolved oxygen concentration of 50%. In the bench-scale culture, the maximum viable cell and spore number were 2.5${\times}$109 CFU/mL, and 2.2${\times}$109 CFU/mL, respectively under 1.0 vvm aeration and 400 rpm agitation. The spore yield was 88% based on the maximum viable cell number. As a result, it was confirmed that the production of high spore concentration could be obtained by a bench-scale culture using an industrial medium.

  • PDF

Preparation and Characteristics of Curd Yogurt from Milk Added with Purple Sweet Potato (자색고구마를 첨가한 호상요쿠르트의 제조와 특성)

  • 이주찬;이가순;이종국;한규흥;오만진
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.442-447
    • /
    • 1999
  • A curd yogurt was prepared by fermenting milk added with skim milk powder and purple sweet potato by culture of 5 types of lactic acid bacteria(Lactobacillus delbruekii sub. sp. lactis, Streptococcus lactis, acidity, number of viable cell, stability of purple sweet potato's pigment and keeping qualify. Among the organisms tested, the acid production and number of viable cell by the culture of L bulgaricus remarkably increased for the first 12 hem which showed 1.04${\times}$10$\^$9/ CFU/mL in number of viable cell and 4.22 In pH where as fermentation by the culture of B. bifidum was slow. After 36 hours of incubation which showed 3.3 ${\times}$ l0$\^$8/ CFU/mL in number of viable cell and 5.1 in pH. In stabilities of purple sweet potato anthocyanin pigment n fermentation, yogurt by B. bifidum was found to be most stable followed by Leuc. lactis, L. delbruekii sub. sp. lactis, L bulgaricus, but yogurt by St. lactis was not stable. When curd yogurt added with Purple sweet Potato was kept at 2∼3$^{\circ}C$ for 14 day, its keeping quality(pH, titratable acidity, number of viable cell) was relative good except product by L. bulgaricus was found to be decreased most of viable cell. After 2 weeks of keeping, pigment of yogurt was decreased by B. bifidum, stable by L. delbruekii sub. sp. lactis.

  • PDF

Growth Ingibiton Effect of E. coli O157:H7 and Salmonella typhimurium by Lactic Fermented Milk Products Administrated Orally in Rabbit (토끼에서 유산 발효유제품 급여에 의한 Escherichia coli O157:H7 및 Salmonella typhimurium의 증균억제효과)

  • 신광순;김용환;손원근;석주명;김상현
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.3
    • /
    • pp.188-194
    • /
    • 1997
  • The growth inhibition effect of Orally administrated yogurt ACE and Metchnikoffupon E. coli O157:H7 and S. typhimurium inoculated into gastric lumen of rabbits was in vestigated. The rabbits challenged with each 1 $m\ell$ of suspension containing 108 CFU/$m\ell$ of the pathogens were divided into 4 groups by the interval of yogurt administration: A group; preadministrated 7 days before inoculation of the pathogens and fed daily; B group; administrated daily after inocjlation of the pathogens, C group; administrated every 3 days after inoculation of the pathogens; Control group, not fed after inoculation of the pathogens. Each 3 $m\ell$ of yogurt containing 109 CFU/$m\ell$ was orally administrated into rabbits. All yogurt administrated groups (A, B, c) chowed growth ingibition effect on E. coli O157:H7 in one day after inoculation of the pathogen by the level of 0.8~1.0 log CFU/g, compared with the result differences between the control group and the yogurt administrated groups. In the control group after 5 days of inoculation, the number of colonized pathogens was 105~106 CFU/g, whereas 103~104 CFU/g was detected in the yogurt administrated groups. After 10 days of inoculation, the viable pathogen number per gram (g) of the rabbit feces was 103 CFU/g in the control group, whereas the number below 101 CFU/g was detected in the group A, and 102 CFU/g in the control group, B and C. The growth inhibition effect of yogurt administration on E. coli O157:H7 was highly increased in the order of A, B, and C group. The same effect on S. typhimurium was observed at the level of 2 log CFU/g in the Metchnikoff yogurt administrated groups, compared with the control group result in one day after inoculation of the pathogen. In 7 days after inoculation of the pathogen, the viable number was increasingly decreased, and finally after 15 days no viable cell of S. typhimurium was discharged into the fecal samples in the group A, and the mean level of 10* CFU/g was detected in the group B, but there was no growth inhibition effect in the group C. The growth inhibition effect on S. typhimurium was observed at the same level of viable cell number between the yogurt ACE administrated groups and the control group in 5 days after inoculation. But, after 10 days of inoclation the viable cell number was started to decrease, and the viable cell of S. typhimurium was not discharged from rabbit intestinal contents after 15 days of inoculation in the yogurt ACE administrated groups. In such a case that yogurt was administrated in order to prevent the pathogens, pre-administration on a daily basis one week before inoculation of the pathogens exerted considerable effect in growth inhibition. In comparison with two kinds of yogurt tested in this study, the growth inhibition effect on two kinds of pathogens was observed more highly in the Metchnikoff administated group than the ACE administrated group.

  • PDF

The inhibitory effect of lactic acid bacteria to periodontal pathogens (치주병원균에 대한 유산균의 억제효과)

  • Jeong, Ha-Na;Oh, Jong-Suk;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.265-276
    • /
    • 1999
  • This study was performed to evaluate the effect of hydrogen peroxide-producing Lactobacillus acidophilus V-20onthe replication of periodontal pathogens, Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. When A. actinomycetemcomitans and P. gingivalis were incubated alone and in the combination with L. acidophilus V-20, the viable cell numbers of A. actinomycetemcomitans and P. gingivalis were compared between those cultures. The effect of S. mutans, E. durans, and L. lactis on the replication of A. actinomycetemcomitans and P. gingivalis was also evaluated. The change of periodontal indexes(probine depth, gingival index, GCF volume) and the viable cell numbers of A. actinomycetemcomitans and black pigmented bacteroides in subgingival plaque sample were evaluated following gargling of fermented milk made from L. acidophilus V-20 for 1 month on patients with periodontal disease in maintenance phase. In the mixed culture of L. acidophilus V-20 and A. actinomycetemcomitans or P. gingivalis, the replication of A. actinomycetemcomitans or P. gingivalis wascompletely inhibited. But in the mixed culture of P. gingivalis and hydrogen peroxide-nonproducing Lactobacillus casei, the viable ceil numbers of P. gingivaliswas not decreased when compared with the numbers in the mixed culture of P. gingivalis and L. acidophilus V-20. In the mixed culture of A. actinomycetemcomitans and S. mutans, E. durans, or L. lactis, the viable cell number of A. actinomycetemcomitans was not almost changed when compared with the numbers in the culture of A. actinomycetemcomitans alone. And in the mixed culture of P. gingivalis and E. durans or L. lactis, the viable cell numbers of P. gingivaliswas not almost changed compared with the counts in the culture of P. gingivalis alone. But the replication of P. gingivalis was completely inhibited in the mixed culture of P. gingivalis and S. mutans. When the change of periodontal indexes following gargling of fermented milk was compared with baseline, probing depth and gingival index were not changed, but GCF volume was significantly decreased(p<0.05). And when the viable ceil numbers of microorganisms in subgingival plaque sample were compared with baseline, total viable ceil number was almost unchanged and the viable cell numbers of A. actinomycetemcomitans and black pigmented bacteroides were significantly decreased(p<0.05). These results suggest that L. acidophilus V-20 inhibit the replication of A. actinomycetemcomitans and black pigmented bacteroides by the formation of hydrogen peroxide.

  • PDF

AN EXPERIMENTAL STUDY ON THE CHANGE OF THE RADIOSENSITIVITY OF SEVERAL TUMOR CELL LINES AND PRIMARY CULTURED GINGIVAL FIBROBLAST (수종의 암세포주와 치은섬유아세포에서 방사선의 양과 분할조사에 따른 세포활성도와 독성의 변화에 관한 연구)

  • Lee Sam-Sun;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.1
    • /
    • pp.107-122
    • /
    • 1997
  • Radiation sensitivity data was generated for two human cancer cell lines(KB, RPMI 2650) and human primary gingival fibroblast was tested three times using a viable cell number counting with a hemocytometer, MTT(3-[4,5-Dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide) assay, and LDH(Lactate dehydrogenase) assay. Single irradiation of 2, 4, 6, 10, 15, 20Gy were applied to the tumor cell lines and the primary cultured gingival fibroblast The two fractions of 4Gy and 10Gy were seperated with a 4 hour time interval. The irradiation was done with 241.5cGy/min dose rate using /sup 137/Cs MK cell irradiator at room temperature. The obtained results were as followed : 1. There was significantly different viable cell numbers as the amount of radiation dose on the tested cells were cell number counted with a hemocytometer. In fractions, there were more viable cells remaining. 2. Phase-contrast microscopically, radiation-induced morphologic changes were pronounced on the tumor cells, however, almost no differences on the gingival fibroblast. 3. There was significantly different absorbance at 2Gy on RPMI 2600, 4Gy on KB and GF in MTT assay. In fractions, the absorbance was significantly higher on KB. 4. The level of extracellular LDH activity in the experimental group was significantly higher in the 2-4Gy than the control group. 5. The total level of extracellular and intracellular LDH activity was decreased as increased amounts of radiation dose was applied.

  • PDF

Fermentation Characteristics of Set-Type Yoghurt from Milk Added with Mugwort Extract (쑥 추출물이 첨가된 Set-Type Yoghurt의 발효 특성)

  • 배인휴;홍기룡;오동환;박정로;최성희
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2000
  • This study was carried out to investigate the fermentation characteristics and storage of set-type yoghurt added mugwort extracts(AME) such as pH, growth of lactic acid bacteria, number of viable cells, viscosity, and sensory characteristics during 24 hours fermentation and 15 days storage. Addition of mugwort extracts was grown rapidly of lactic acid bacteria rather than that of control and also 4 or 8% AME groups were grown similar to control. The drop of AME pH of broth was less compared with control during incubation of lactic acid bacteria. The growth of lactic acid bacteria during incubation of AME yoghurt was not different of viable cell count between AME group and control in beginning time, but the viable cell count of AME groups were increased depended opon addition quantity of AME in ending time. Addition of mugwort extracts was not affect on pH change during yoghurt fermentation and increased a lactic acid bacteria number as well as no effect of yoghurt fermentation in ending time. The viscosity of yoghurt was almost not changed 3 hours after yoghurt mix and increased rapidly 6 hours after yoghurt mix. Although control and 0.5% AME group showed maximum viscosity at 18 hours of fermentation, 1 and 2% AME group showed linear increase until 24 hours of fermentation. Mugwort did not affect pH and viable cel number of lactic acid bacteria during 15 days storage 24 hours after fermentation. Sensory evaluation of the AME yoghurt showed that flavour, texture and acid taste were not affected by addition of mugwort. However, the appearance and taste were dropped by addition of mugwort.

  • PDF

Optimization of Food Waste Fermentation for Probiotic Feed Production with Yeast Kluyveromyces marxianus

  • Lee, Ki-Young;Yu, Sung-Jin;Yu, Seung-Yeng
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.121-125
    • /
    • 2001
  • For the probiotic feed production, aerobic liquid fermentation of pulverized food wastes was attempted with a yeast Kluyveromyces marxianus. After grinding finely, optimal fermentation conditions of the substrate was investigated by shaking culture. The most active growth of the yeast was shown at solid content of 10%. The proper addition of urea(0.5g/l), o-phosphate(0.4g/l), molasses(4g/l), and yeast extract (1g/1) increased cell growth rate and viable cell count. For optimizing, the nutrients were all added to substrate and fermentation was carried in 2 litre jar fermenter. For the stimulation of hydrolyzing enzyme excretion, mixed culture with Aspersillus oryzae was also conducted. In 12 hours of fermentation, viable cell count of the yeast Kluyveromyces marxianus amounted to the number of 1.4 $\times$10$^{10}$ /1 in the culture medium.

  • PDF

Preparation of Yogurt from Milk Added with Purple Sweet Potato (자색고구마 첨가 요구르트의 제조 및 특성)

  • 전승호;이상욱;신용서;이갑성;류일환
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2000
  • New type yogurt base were prepared from milk added with skim milk powder or purple sweet potato, and fermented by lactic acid bacteria (Streptococcus thermophilus and Bifidobacterium infantis, 1:1, v/v). The yogurt proudcts were evaluated for acid production(pH, titratiable acidity), number of viable cell, viscosity, sensory properties, and color value. The composition of some organic acids was also analyzed by GC. The acid production slightly decrerased by addition with purple sweet potato. There was no significant difference in viable cell counts between control (yogurt added with only skim milk powder) and yogurt added with purple sweet potato, and viable cell counts of all samples were above 9.08 log cfu/ml. Viscosity of yogurt added with purple sweet potato(36,800∼46,000 centipoise) was higher than that of yogurt added with only skim milk powder(32,200 centipoise). The overall sensory score of yogurt added with purple sweet potato(38.6%, dry base) was the best of tested yogurt. The major organic acid of yogurt added with purple sweet potato was lactic acid. its content was 0.997∼1.203%. malic acid, succinic acid, oxalic acid, and fumaric acid were analyzed out a little. Lightness and yellowness decreased by addition with purple sweet potato but redness increased. Total color difference($\Delta$E) with yogurt addition with purple sweet potato and only skim milk powder were very high(above 11.46).

  • PDF