• Title/Summary/Keyword: Viable bacteria

Search Result 807, Processing Time 0.023 seconds

Significance of Viable but Nonculturable Escherichia coli: Induction, Detection, and Control

  • Ding, Tian;Suo, Yuanjie;Xiang, Qisen;Zhao, Xihong;Chen, Shiguo;Ye, Xingqian;Liu, Donghong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.417-428
    • /
    • 2017
  • Diseases caused by foodborne or waterborne pathogens are emerging. Many pathogens can enter into the viable but nonculturable (VBNC) state, which is a survival strategy when exposed to harsh environmental stresses. Pathogens in the VBNC state have the ability to evade conventional microbiological detection methods, posing a significant and potential health risk. Therefore, controlling VBNC bacteria in food processing and the environment is of great importance. As the typical one of the gram-negatives, Escherichia coli (E. coli) is a widespread foodborne and waterborne pathogenic bacterium and is able to enter into a VBNC state in extreme conditions (similar to the other gram-negative bacteria), including inducing factors and resuscitation stimulus. VBNC E. coli has the ability to recover both culturability and pathogenicity, which may bring potential health risk. This review describes the concrete factors (nonthermal treatment, chemical agents, and environmental factors) that induce E. coli into the VBNC state, the condition or stimulus required for resuscitation of VBNC E. coli, and the methods for detecting VBNC E. coli. Furthermore, the mechanism of genes and proteins involved in the VBNC E. coli is also discussed in this review.

Safety Monitoring of a Processing Plant for Preparing Raw Oysters Crassostrea gigas for Consumption (생식용 굴(Crassostrea gigas) 작업장의 위생안전성에 대한 모니터링)

  • Kang, Kyung Tae;Park, Sun Young;Choi, Jong-Duck;Kim, Min Joo;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.120-129
    • /
    • 2017
  • This study assessed the safety of raw oysters Crassostrea gigas for consumption during processing in a processing plant. Bacterial contamination (e.g., viable cell counts, coliform groups, Escherichia. coli and pathogenic bacteria) and chemical contamination (e.g., heavy metals and shellfish toxins) were measured on raw oysters, a processing equipment, employees and work areas. No total mercury, lead, paralytic shellfish poison, diarrheic shellfish poison or norovirus was detected in any post-harvested oyster samples. However, the cadmium level ranged from 0.1-0.2 mg/kg. The viable cell count, E. coli and coliform group levels in post-harvested oysters ranged from 4.00-4.54 log CFU/g, ND-210 MPN/100 g and 110-410 MPN/100 g, respectively. The viable contaminating cell counts on employees, equipment and work areas were in the range of $0.90-3.46log\;CFU/100cm^2$. Airborne bacteria in the work areas ranged from 0.60 to 1.81 log CFU/plate/15 min. Thus, no significant health risks were detected in the processing plant.

Ethidium monoazide-PCR for the detection of viable Escherichia coli in aquatic environments (수환경에서 살아 있는 대장균의 검출을 위한 ethidium monoazide-중합효소연쇄반응법)

  • Lee, Gyucheol;Kim, Hyunjeong;Lee, Byunggi;Kwon, Soonbok;Kim, Gidon;Lee, Sangtae;Lee, Chanhee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.199-205
    • /
    • 2009
  • It is very important to differentiate of DNA derived from live or dead bacteria within mixed microbial communities in aquatic environments. Ethidium monoazide (EMA) is a DNA intercalating agent and the treatment of EMA with strong visible light cleaves the genomic DNA of bacteria. In dead bacterial cells, EMA intercalates into the genomic DNA, induces the cleavage of DNA, and inhibits the PCR amplification. In this study, we developed the EMA-PCR and EMA real-time PCR to detect the DNA derived from viable Escherichia coli (E.coli) in mixed cultures of live and dead E.coli. The treatment of EMA, $50{\mu}g/mL$, and 650 W visible halogen light exposure for 2 minutes cleaved the genomic DNA derived from heat killed E.coli but did not those of live E.coli. EMA-PCR could detect the DNA from live E.coli in mixed culture samples of live and dead E.coli at various ratio and there was no DNA amplification in only dead E.coli cultures. Similar results were observed in EMA real-time PCR. Further studies are needed to develop various EMA-PCR methods to detect viable waterborne pathogens such as Helicobacter pylori, Giardia lamblia, and so on.

Induced Death of Escherichia coli Encapsulated in a Hollow Fiber Membrane as Observed In Vitro or After Subcutaneous Implantation

  • Granicka, L. H.;Zolnierowicz, J.;Wasilewska, D.;Werynski, A.;Kawiak, J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.224-228
    • /
    • 2010
  • The encapsulation of bacteria may be used to harness them for longer periods of time in order to make them viable, whereas antibiotic treatment would result in controlled release of therapeutic molecules. Encapsulated Escherichia coli GFP (green fluorescent protein) (E. coli GFP) was used here as a model for therapeutic substance - GFP fragments release (model of bioactive substances). Our aim was to evaluate the performance of bacteria encapsulated in hollow fibers (HFs) treated with antibiotic for induction of cell death. The polypropylene-surface-modified HFs were applied for E. coli encapsulation. The encapsulated bacteria were treated with tetracycline in vitro or in vivo during subcutaneous implantation into mice. The HF content was evaluated in a flow cytometer, to assess the bacteria cell membrane permeability changes induced by tetracycline treatment. It was observed that the applied membranes prevented release of bacteria through the HF wall. The E. coli GFP culture encapsulated in HF in vitro proved the tetracycline impact on bacteria viability and allows the recognition of the sequence of events within the process of bacteria death. Treatment of the SCID mice with tetracycline for 8 h proved the tetracycline impact on bacteria viability in vivo, raising the necrotic bacteria-releasing GFP fragments. It was concluded that the bacteria may be safely enclosed within the HF at the site of implantation, and when the animal is treated with antibiotic, bacteria may act as a local source of fragments of proteins expressed in the bacteria, a hypothetical bioactive factor for the host eukaryotic organism.

Effect of Lactic Acid Bacteria on the Regulation of Blood Glucose Level in Streptozotocin-induced Diabetic Rats

  • Yeo, Moon-Hwan;Seo, Jae-Gu;Chung, Myung-Jun;Lee, Hyun-Gi
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • To identify the treatment effect of lactic acid bacteria for diabetes, the treatment effects of a single administration of acarbose (a diabetes treatment drug) or lactic acid bacteria, and the mixture of acarbose and lactic acid bacteria on diabetes in a type 1 diabetes animal model, were studied. In this study, streptozotocin was inoculated into a Sprague-Dawley rat to induce diabetes, and sham control (Sham), diabetic control (STZ), STZ and composition with live cell, STZ and composition with heat killed cell, STZ and composition with drugs (acarbose) were orally administered. Then the treatment effect on diabetes was observed by measuring the body weight, blood glucose, and serum lipid. For the histopathological examination of the pancreas, the Langerhans islet of the pancreas was observed using hematoxylin and eosin staining, and the renal cortex, outer medullar, and inner medullar were also observed. The induced diabetes decreased the body weight, and the fasting blood glucose level decreased in the lactic-acid-bacteria-administered group and the mixture-administered group. In addition, the probiotic resulted in the greatest decrease in the serum cholesterol level, which is closely related to diabetes. Also, the hematoxylin and eosin staining of the Langerhans islet showed that the reduction in the size of the Langerhans islet slowed in the lactic-acid-bacteria-administered group. The histopathological examination confirmed that the symptoms of diabetic nephropathy decreased in the group to which viable bacteria and acarbose were administered, unlike in the group to which dead bacteria was administered. The mixture of lactic acid bacteria and acarbose and the single administration of lactic acid bacteria or acarbose had treatment effects on the size of the Langerhans islet and of the kidney histopathology. Thus, it is believed that lactic acid bacteria have treatment effects on diabetes and can be used as supplements for the treatment of diabetes.

Distribution of viable indigenous bacteria in different sire fractions of ozonated soils

  • Yeong Hui, An;Hae Ryong, Jeong;Ji Won, Yang
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.162-166
    • /
    • 2004
  • This study investigated tile effect of ozonation on indigenous microorganisms distributed in different size fractions of soil aggregates. Soil was ozonated from 0 to 300 minutes. The treated soils were fractionated into 3 groups (small, <53 $\mu$m; medium, 53-500 $\mu$m; and large, 2000-500 $\mu$m) and total heterotrophic bacteria in the soils were enumerated. Cell number decreased rapidly within 120 minute ozonation and showed slow decrease upon longer ozonation. Abundance of total heterotrophic bacteria in each fraction was in the following order regardless of ozonation time: small>medium>large fractions. Difference in microbial abundance among the fractions was smaller as ozonation time increased.

  • PDF

Distribution and Activity of Hheterotrophic Bacteria in the Mudflat of Nakdong River Estuary (난동감 하구 간석지에 존재하는 세균의 분포 및 생리적 활성도)

  • Kim, Sang-Jong;Hong, Soon-Woo;Rhie, Youn;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.23 no.3
    • /
    • pp.215-222
    • /
    • 1985
  • Distribution pattern and activity of heterotrophec bacteria were measured in the mudflat of Nakdong river estuary. In March and June, 1985, community sizes of amylolytic, lipolytic and proteolytic bacteria as well as total viable counts were measured. Vertical distribution of bacterial community size increased a few orders of magnitude from Narch to June. Heterotrophic activity was estimated in turnover time with $U-[^{14}C]-glucose$. Turnover time reduced considerably in June compared to that of March. To sxamine correlations for measured bacterial groups, turnover time and environmental factors, correlation coefficient matrix was obtained. These measured characteristics did not consistently correlate well with one another.

  • PDF

Photodynamic Therapy for Methicillin-resistant Staphylococcus aureus with High-level Mupirocin Resistance using 630 nm Light-emitting Diode

  • Kwon, Pil-Seung;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2010
  • This study aims to evaluate the effect of Photodynamic Therapy (PDT) against methicillin-resistant Staphylococcus aureus with high-level mupirocin resistance (Hi-Mup MRSA). To examine the antimicrobial effect of photogem-mediated PDT against Hi-Mup MRSA, CFU quantifications, bacteria cell viability tests, and disk diffusion antimicrobial susceptibility tests were evaluated. In addition, one of PDT mechanisms was investigated by accumulating photogem ($10\;{\mu}g/ml$) in Hi-Mup MRSA. Photogem-mediated PDT properly inhibited the colony formation of Hi-Mup MRSA. Viable bacteria decreased greatly after a PDT application with photogem $10\;{\mu}g/ml$ at energy density $15\;J/cm^2$. The diameter of the inhibition zone around susceptible disks increased after PDT. In addition, we confirmed the accumulation of photogem in bacteria through fluorescent images. These results demonstrated that excellent photosensitization of Hi-Mup MRSA can be achieved using photogem with 630 nm LED irradiation. Thus, PDT may make survival Hi-Mup MRSA inactive.

Sustainable Use of Marine Microorganisms

  • Lee Yoo Kyung;Lee Jung Hyun;Kwon Kae Kyoung;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.94-99
    • /
    • 2002
  • The oceans cover about $71\%$ of the Earth's crust and contain nearly 300,000 described species. Free-living bacteria in the sea and symbiotic bacteria of marine invertebrates are proving to be valuable sources of useful bioactive compounds. Marine sponges, in particular, which contain diverse communities of bacteria, produce many classes of compounds that are unique to the marine environment. Uncultured microorganisms are commonly believed to represent $99.9\%$ of the whole microbial community. They have been investigated for the possibility of isolating and over-expressing genes in viable microorganisms. Strict symbiotic species that have been adapted to the host are candidate unculturable species. With the enormous potential for discovery, development, and market value of marine derived compounds, supply of the products is a major limiting factor for further development.

  • PDF

Study on the distribution of marine bacteria and the consumption of oxygen in Wonmun bay (원문만의 해양세균분포와 산소소모량에 관한 연구)

  • PARK Young-Tae;LEE Won-Jae;PARK Joo-Suck;LEE Pil_Yong;KIM Hak-Gyoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.303-314
    • /
    • 1991
  • Hypoxic bottom $(\leq2.0ml/l),\;40\%\;oxygen\;saturation)$ is formed in the semi-closed Wonmun bay during summer and autumn early. This study was carried out to know seasonal distribution of marine bacteria and the role of marine bacteria for forming the hypoxic bottom at Wonmun bay during summer and autumn early, 1990. During the study periods, 170 bacterial strains were isolated from sea water and sediment. Viable cell counts were ranged between $10^5-10^7\;cells/ml$. The dominant species were Acinetobacter spp. in spring, Flavobacerium spp. in summer, Pseudomonas spp. in autumn, Serratia spp. in winter. Because ETSA(Electron Transport System Activity) reveals potential consumption of oxygen in the aquatic microorganisms, the ETSA was used as potential consumption of oxygen in this study. The potential consumption of oxygen was in the range of $232.4-637.5{\mu}l/O_2/l/day$ by marine organism and $142.6-432.4{\mu}l/O_2/l/day$ by marine bacteria during the study periods. The ratio of potential oxygen consumption of marine bacteria to total marine microorganism was 0.54. The potential consumption of oxygen by marine bacteria closely related with the number of viable cells. Consequently, bacteria play an important role to form Hypoxic bottom at marine environment.

  • PDF