• Title/Summary/Keyword: Viability Mechanism

Search Result 596, Processing Time 0.031 seconds

Protective Effect of Hwansodan in Serum and Glucose Deprivation Induced-apoptotic Death of PC12 Cells Via Ho-1 Expression (영양혈청 결핍성 PC12 세포고사에서 HO-1의 발현 증가를 통한 환소단의 보호 효과)

  • Jung, Jae-Eun;Kim, Jin-Kyung;Kang, Baek-Gyu;Park, Chan-Ny;Park, Rae-Kil;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1459-1466
    • /
    • 2006
  • The water extract of Hwansodan has been traditionally used for treatment of ischemic brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of Hwansodan rescues cells from neurodegenerative disease. PC12 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular mechanisms of neuronal cell damages. Under deprivation of growth factor and ischemic injury, PC12 cells spontaneously undergoes apoptotic cell death. Serum and glucose deprivation markedly decreased the viability of PC12 cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the aqueous extract of Hwansodan significantly reduced serum and glucose deprivation-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Pretreatment of Hwansodan also ingibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 was completely abolished in serum and glucose deprivated cells. Furthermore, pretreatment of Hwansodan obviously increased heme oxygenase 1 (HO-1) expression in PC12 cells. Taken together, the data suggest that the protective effects of Hwansodan against serum and glucose deprivation induced oxidative injuries may be achieved through the scavenging of reactive oxygene species accompanying with HO-1 induction.

Danchunhwan Protects the Cytotoxicity of Beta-amyloid in SH-SY5Y Neuroblastoma Cells (베타아밀로이드 유도성 SH-SY5Y 세포독성에서 단천환(丹川丸)의 보호효과)

  • Yu, Bong-Sun;Kim, Jin-Kyung;;Park, Chan-Ny;So, Hong-Seob
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1516-1523
    • /
    • 2006
  • The water extract of Danchunhwan(DCH) has been traditionally used for treatment of dementia damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from neurodegenerative disease such as Alzheimer's disease. This study was designed to investigate the protective mechanisms of DCH on ${\beta}$-amyloid or $H_2O_2$-induced cytotoxicity in SH-SY5Y neuronblastoma cells. ${\beta}$-amyloid and $H_2O_2$ markedly decreased the viability of SH-SY5Y cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the water extract of DCH significantly reduced both ${\beta}$-amyloid or $H_2O_2$-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Also, the water extract of DCH prevented prevented the mitochondrial dysfunction including the disruption of mitochondria membrane permeability transition (MPT) and the perturbation in Bcl-2 family protein expressions in $H_2O_2$-treated SH-SY5Y cells.

Inhibitory Effect of Scorpion MeOH Extract on Nitric Oxide and Cytokine Production in Lipopolysaccharide - Activated Raw 264.7 Cells (전갈 메탄올추출물이 LPS로 유도된 Raw 264.7 cell에서의 nitric oxide 및 cytokine에 미치는 영향)

  • Choi, Jun-Hyeok;Lee, Jong-Rok;Jee, Seon-Young;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.721-727
    • /
    • 2007
  • Scorpion (SCP) has been clinically used for the treatment of endogenous wind to relieve convulsion, clearing away toxins, resolving hard masses and removing obstruction in the collaterals to relieve pain. Recent studies showed that scorpion toxins that affect the activating mechanism of sodium channels and indian black scorpion venom induced anti-proliferative and apoptogenic activity against human leukemic cell lines U937 and K562. There is lack of studies regarding the effects of SCP on the immunological activities. The present study was conducted to evaluate the effect of SCP on the regulatory effects of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. After the treatment of SCP MeOH extract dissolved in media for 1 h prior to the addition of lipopolysaccharide (LPS: 1 ${\mu}$g/ml), cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Inducible nitric oxide synthase (iNOS) was determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. As results, SCP inhibited the production of nitrite and nitrate (0.3 and 1.0 mg/ml), iNOS and p-$I_KB_{\alpha}$ protein, tumor necrosis factor-${\alpha}$ (0.3 and 1.0 mg/ml), interleukin-1${\beta}$ (0.3 and 1.0 mg/ml) and interleukin-6 (1.0mg/ml) in Raw 264.7 cells activated with LPS. These findings suggest that SCP can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Antibody-dependent rat macrophage-mediated damage Into the excysted metacercariae of Paragonimus westeymani in vitro (폐흡충(Paragonimus westermani) 감염시의 세포 면역학적 장어 기전)

  • 정평림;장재경;소진천
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.1
    • /
    • pp.43-54
    • /
    • 1991
  • An in vitro immune effector mechanism against the target encysted metacercariae of Paragonimus westermani was demonstrated in the rat system. Peritoneal exudate cells, mainly macrophages from normal rats, showed adherence to and killing of encysted metacercariae of p. westermani in the presence of complement-independent serum from rats infected with Paragonimus metacercariae. These reactions were specific for the excysted metacercariae, as tissue-migrating juvenile worms were not affected. Damage of encysted metacercariae of p. westermani due to antibody and macrophages was assessed by morphological observation, by cell adherence reaction and by the use of vital dyes. frypan blue dye exclusion proved to be a reliable indicator of judging metacercarial viability. Electron microscopic studies demonstrated that macrophages reacted with fusty material on the tegumental surface and fine structures in the syncytium of the parasites. The tubular tunnels formed between the basement membrane and muscle layers of the damaged parasites were also noticeable. The relevance of these findings to cellular immunity in the early paragonimiasis was discussed.

  • PDF

Trichostatin A Induces Apoptotic Cell Death in Human Breast Carcinoma Cells through Activation of Caspase-3

  • Kim, Nsm-Deuk;Kim, Seaho;Choi, Yung-Hyun;Im, Eun-Ok;Lee, Ji-Hyeon;Kim, Dong-Kyoo
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.39-44
    • /
    • 2000
  • Trichostatin A (TSA) is a Streptomyces product, which inhibits the enzyme activity of histone deacetylase. It is also known as an inducer of apoptosis in several human cancer cell lines. In this study, we investigated the mechanism of apoptosis induced by TSA in MDA-MB-231 human breast carcinoma cells. The cytotoxicity of TSA on MDA-MB-231 cells was assessed by MTT assay. The cell viability was decreased dose-dependently and the IC\ulcorner value was about 100 ng/ml after 48 h treatment with TSA. Morphological change and DNA ladder formation, the biochemical hallmarks of apoptotic cell death, were observed after treatment of TSA in a concentration-dependent manner, which was accompanied with cleavage of poly(ADP-ribose) polymerase and $\beta$-catenin, and activation of caspase-3. TSA treatment up-regulated the expression of a cyclin-dependent kinase inhibitor p21 (Wafl/Cip1) protein, a key regulatory protein of the cell cycle. However, there is no detectable change of both Bcl-2 and Bax expressions. These results demonstrated that TSA might inhibit cell growth through apoptosis in human breast carcinoma MDA-MB-231 cells.

  • PDF

Dudleya brittonii extract promotes survival rate and M2-like metabolic change in porcine 3D4/31 alveolar macrophages

  • Kim, Hyungkuen;Jeon, Eek Hyung;Park, Byung-Chul;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1789-1800
    • /
    • 2019
  • Objective: Although alveolar macrophages play a key role in the respiratory immunity of livestock, studies on the mechanism of differentiation and survival of alveolar macrophages are lacking. Therefore, we undertook to investigate changes in the lipid metabolism and survival rate, using 3D4/31 macrophages and Dudleya brittonii which has been used as a traditional asthma treatment. Methods: 3D4/31 macrophages were used as the in vitro porcine alveolar macrophages model. The cells were activated by exposure to phorbol 12-myristate 13-acetate (PMA). Dudleya brittonii extraction was performed with distilled water. For evaluating the cell survival rate, we performed the water-soluble tetrazolium salt cell viability assay and growth curve analysis. To confirm cell death, cell cycle and intracellular reactive oxygen species (ROS) levels were measured using flow cytometric analysis by applying fluorescence dye dichlorofluorescein diacetate and propidium iodide. Furthermore, we also evaluated cellular lipid accumulation with oil red O staining, and fatty acid synthesis related genes expression levels using quantitative polymerase chain reaction (qPCR) with SYBR green dye. Glycolysis, fatty acid oxidation, and tricarboxylic acid (TCA) cycle related gene expression levels were measured using qPCR after exposure to Dudleya brittonii extract (DB) for 12 h. Results: The ROS production and cell death were induced by PMA treatment, and exposure to DB reduced the PMA induced downregulation of cell survival. The PMA and DB treatments upregulated the lipid accumulation, with corresponding increase in the acetyl-CoA carboxylase alpha, fatty acid synthase mRNA expressions. DB-PMA co-treatment reduced the glycolysis genes expression, but increased the expressions of fatty acid oxidation and TCA cycle genes. Conclusion: This study provides new insights and directions for further research relating to the immunity of porcine respiratory system, by employing a model based on alveolar macrophages and natural materials.

Cytotoxic Effects of Radix Aconiti Extract in Lung Cancer Cell Lines (폐암세포에 대한 부자(附子) 추출물의 독성 효과)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Moon, Hyung-Cheal;Song, Yung-Sun;Ryu, Do-Gon
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.106-112
    • /
    • 2006
  • The aim of this study was to investigate the cytotoxic effect and its mechanism on Radix Aconiti(RA) extract in lung cancer cell lines. RA extract treatment decreased the cell viability in a dose-dependent fashions in lung cancer cells including A549, H460, H23 and H157 cells. Many investigators reported that A549 and H460 cells expressed wild-type p53, but H23 and H157 cells preserved mutated p53. After treatment with RA extract in A549 and H460 cells, we measured the expression of p53 protein levels using Western blot. analysis. In both cells treated with RA extracts, p53 protein expressions were increased in a dose-dependent manner. In our experiments, RA extracts also have cytotoxic effects in H23 and H157, which have mutated p53. Treatment with RA extract decreased bcl-2 protein expressions in both cells. These results suggest that RA extracts have cytotoxic effects via p53 expression increase and bcl-2 inhibitable pathways in A549, H460 cells and H23, H157 cells, respectively.

  • PDF

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2021
  • Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection

  • Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Vu, Son Hai;Kim, Hyun Jin;Lee, Jin Ju;Choi, Jeong Soo;Lee, John Hwa;Kim, Suk
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.12
    • /
    • 2021
  • Background: We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives: We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods: Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results: PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions: Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.

Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway

  • Cui, Yanji;Amarsanaa, Khulan;Lee, Ji Hyung;Rhim, Jong-Kook;Kwon, Jung Mi;Kim, Seong-Ho;Park, Joo Min;Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2019
  • Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons ($100{\mu}M$, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner ($1-50{\mu}M$) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of $Ca^{2+}$ and ROS, mitochondrial membrane potential (${\Delta}{\Psi}_m$) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.