• Title/Summary/Keyword: Viability Mechanism

Search Result 596, Processing Time 0.031 seconds

GTP Induces S-phase Cell-cycle Arrest and Inhibits DNA Synthesis in K562 Cells But Not in Normal Human Peripheral Lymphocytes

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.492-501
    • /
    • 2006
  • Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, we used guanosine 5'-triphosphate (GTP) to study its effects on K562 cell line. GTP, at concentrations between 25-200 ${\mu}M$, inhibited proliferation (3-90%) and induced 5-78% increase in benzidine-positive cells after 6-days of treatments of K562 cells. Flow cytometric analyses of glycophorine A (GPA) showed that GTP can induce expression of this marker in more mature erythroid cells in a time- and dose-dependent manner. These effects of GTP were also accompanied with inhibition of DNA synthesis (measured by [$^3H$]-thymidine incorporation) and early S-phase cell cycle arrest by 96 h of exposure. In contrast, no detectable effects were observed when GTP administered to unstimulated human peripheral blood lymphocytes (PBL). However, GTP induced an increase in proliferation, DNA synthesis and viability of mitogen-stimulated PBL cells. In addition, growth inhibition and differentiating effects of GTP were also induced by its corresponding nucleotides GDP, GMP and guanosine (Guo). In heat-inactivated medium, where rapid degradation of GTP via extracellular nucleotidases is slow, the anti-proliferative and differentiating effects of all type of guanine nucleotides (except Guo) were significantly decreased. Moreover, adenosine, as an inhibitor of Guo transporter system, markedly reduced the GTP effects in K562 cells, suggesting that the extracellulr degradation of GTP or its final conversion to Guo may account for the mechanism of GTP effects. This view is further supported by the fact that GTP and Guo are both capable of impeding the effects of mycophenolic acid. In conclusion, our data will hopefully have important impact on pharmaceutical evaluation of guanine nucleotides for leukemia treatments.

Effect of Jungmanbunso-hwan Extract on HepG2 Cell Model of Nonalcoholic Fatty Liver Disease Caused by Palmitate (중만분소환 추출물이 Palmitate로 유발된 비알코올성 지방간 HepG2 cell 모델에 미치는 영향)

  • Lee, Ji-won;Choi, Chang-won;Jeon, Sang-yun;Han, Chang-woo;Ha, Ye-jin
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.3
    • /
    • pp.442-452
    • /
    • 2016
  • Objectives: This study was performed to investigate the anti-lipogenic effect and the mechanism of Jungmanbunso-hwan extract (JMBSH) on a cellular model of non-alcoholic fatty liver disease (NAFLD) caused by palmitate in HepG2 cells.Methods: The JMBSH was prepared, andHepG2 cells were treated with various concentrations of JMBSH in order to perform an MTT assay. The HepG2 cells were cultivated in palmitate-containing media with or without extract of JMBSH. The intracellular lipid content in the HepG2 cells was examined. The effects of JMBSH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and AMP-activated protein kinase (AMPK) activation in HepG2 cells were measured.Results: JMBSH did not reduce HepG2 cell viability under 1,000 μg/mL. JMBSH considerably decreased intracellular lipid accumulation caused by palmitate in HepG2 cells. JMBSH repressed expression of SREBP-1c, which mediates the induction of lipogenic genes (ACC, FAS, and SCD-1). JMBSH also activated AMPK, which plays animportant role in the regulation of hepatic lipid metabolism.Conclusions: This study suggested that JMBSH relieves hepatic steatosis by repressing SREBP-1c, which mediates the induction of lipogenic genes. The anti-lipogenic effect of JMBSH may also be related to the activation of AMPK. Therefore, JMBSH could potentially be applied to NAFLD treatment after further clinical studies.

Study of Paljinhangahm-dan on Anti-tumoral Effect and Mechanism (팔진항암단의 항종양효과 및 기전연구)

  • Bae Nam Kyu;Moon Seok Jae;Won Jin Hee;Kim Dong Woung;Moon Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1143-1150
    • /
    • 2002
  • Recent evidence suggests that many Oriental Medicinal prescriptions are effective in cancer patients as a supportive care. Oriental Medicinal herbs have been investigated extensively and are known to have multiple pharmacological effect. These herbs contain a variety of ingredients which may act synergistically to inhibit tumor cell division, to increase tumor cell death (apoptosis), and to increase the proportion of immune cells within tumor. Paljinhangahm-dan (Paljin) has been used to treat for cancer patients in Oriental Medicine for decades. The effects of aqueous extract of Paljin on the induction of apoptotic cell death were investigated in human leukemia cell lines (HL-60, Jurkat, Molt-4 and U937). The viability of leukemia cells was markedly decreased by Paljin in a dose-dependent manner. Paljin induced the apoptotic death of leukemia cells, which was characterized by the ladder-pattern DNA fragmentation, and chromatin condensation of the nuclei. Paljin digested Bid protein but did not affect Bcl-2 protein level and also, induced mitochondrial dysfunction disrupted as shown as the mitochondrial membrane potential. It activated caspase-9 and caspase-3. thereby resulted in cleavage of poly(ADP) ribose polymerase(PARP). These results indicate that Paljin induces apoptosis of human leukemia cells via activation of intrinsic caspase cascades with mitochondrial dysfunction.

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoonho;Lee, Keunwook;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.322-327
    • /
    • 2018
  • A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

Effects of Cryopreservation on Ca2+ Signals Induced by Membrane Depolarization, Caffeine, Thapsigargin and Progesterone in Boar Spermatozoa

  • Kim, Joon-Chul;Li, Yuhua;Lee, Sunwoo;Yi, Young-Joo;Park, Chang-Sik;Woo, Sun-Hee
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.558-565
    • /
    • 2008
  • Although the fertilizing ability of spermatozoa is greatly reduced after freezing, complete understanding of alterations induced by cryopreservation has not been elucidated. The present study evaluates the effects of cryopreservation on the $Ca^{2+}$ handling of boar spermatozoa using several sperm activators. Intracellular $Ca^{2+}$ signals from single spermatozoa were measured using confocal $Ca^{2+}$ imaging of unfrozen samples and of other spermatozoa after having been frozen. Elevation of the external $K^{2+}$ concentration elicited a three times larger $Ca^{2+}$ increase in fresh spermatozoa than in cryopreserved spermatozoa. Caffeine elicited $Ca^{2+}$ transients with some oscillations in the fresh spermatozoa, but not in the thawed spermatozoa. Depletion of the $Ca^{2+}$ store with thapsigargin induced a rapid rise in $Ca^{2+}$ in the control but generated a smaller increase of $Ca^{2+}$ after thawing. Exposure to progesterone induced a biphasic rise of the $Ca^{2+}$ level in the fresh spermatozoa only. Sperm viability was reduced by cryopreservation. Resting $Ca^{2+}$ levels in fresh and cryopreserved spermatozoa were similar. Longer incubation (2.5 h) of thawed spermatozoa partly recovered the $Ca^{2+}$ response to the interventions. These results suggest that cryopreservation reduces the responsiveness of spermatozoa to depolarization, modulators of the internal $Ca^{2+}$ store and progesterone in terms of the $Ca^{2+}$ signal, thus providing a possible mechanism for reduced fertility observed in cryopreserved boar spermatozoa.

Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways

  • Wee, Lee Heng;Morad, Noor Azian;Aan, Goon Jo;Makpol, Suzana;Ngah, Wan Zurinah Wan;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6549-6556
    • /
    • 2015
  • The PI3K-Akt-mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with $IC_{50}$ values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, ${\beta}$-catenin, $Gsk3{\beta}$, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, $Wnt/{\beta}$ catenin signaling pathways and induction of apoptosis pathway.

Mechanism of Action of Nigella sativa on Human Colon Cancer Cells: the Suppression of AP-1 and NF-κB Transcription Factors and the Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7943-7957
    • /
    • 2015
  • Background and Aims: Colorectal cancer is one of the leading causes of death in the world. The aim of this study was to investigate the growth-suppression potentiality of a crude saponin extract (CSENS) prepared from medicinal herb, Nigella sativa, on human colon cancer cells, HCT116. Materials and Methods: HCT116 cells were subjected to increasing doses of CSENS for 24, 48 and 72 h, and then harvested and assayed for cell viability by WST-1. Flow cytometry analyses, cell death detection ELISA, fluorescent stains (Hoechst 33342 and acridine orange/ethidium bromide), DNA laddering and comet assays were carried out to confirm the apoptogenic effects of CSENS. Luciferase reporter gene assays, quantitative reverse transcription-polymerase chain reaction and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Results: The results demonstrated that CSENS inhibited proliferation and induced apoptosis. Apoptosis was confirmed by flow cytometry analyses, while CSENS-treated cells exhibited morphological hallmarks of apoptosis including cell shrinkage, irregularity in cellular shape, cellular detachment and chromatin condensation. Biochemical signs of apoptosis, such as DNA degradation, were observed by comet assay and gel electrophoresis. The pro-apoptotic effect of CSENS was caspase-3-independent and associated with increase of the Bax/Bcl-2 ratio. CSENS treatment down-regulated transcriptional and DNA-binding activities of NF-${\kappa}B$ and AP-1 proteins, associated with down-regulation of their target oncogenes, c-Myc, cyclin D1 and survivin. On the other hand, CSENS up-regulated transcriptional and DNA-binding activities of Nrf2 and expression of cytoprotective genes. In addition, CSENS modulated the expression levels of ERK1/2 MAPK, p53 and p21. Conclusions: These findings suggest that CSENS may be a valuable agent for treatment of colon cancer.

Exogenous Morphine Inhibits Human Gastric Cancer MGC-803 Cell Growth by Cell Cycle Arrest and Apoptosis Induction

  • Qin, Yi;Chen, Jing;Li, Li;Liao, Chun-Jie;Liang, Yu-Bing;Guan, En-Jian;Xie, Yu-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1377-1382
    • /
    • 2012
  • Morphine is not only an analgesic treating pain for patients with cancer but also a potential anticancer drug inhibiting tumor growth and proliferation. To gain better insight into the involvement of morphine in the biological characteristics of gastric cancer, we investigated effects on progression of gastric carcinoma cells and the expression of some apoptosis-related genes including caspase-9, caspase-3, survivin and NF-${\kappa}B$ using the MGC-803 human gastric cancer cell line. The viability of cells was assessed by MTT assay, proliferation by colony formation assay, cell cycle progression and apoptosis by flow cytometry and ultrastructural alteration by transmission electron microscopy. The influences of morphine on caspase-9, caspase-3, survivin and NF-${\kappa}B$ were evaluated by semi-quantitative RT-PCR and Western blot. Our data showed that morphine could significantly inhibit cell growth and proliferation and cause cell cycle arrest in the G2/M phase. MGC-803 cells which were incubated with morphine also had a higher apoptotic rate than control cells. Morphine also led to morphological changes of gastric cancer cells. The mechanism of morphine inhibiting gastric cancer progression in vitro might be associated with activation of caspase-9 and caspase-3 and inhibition of survivin and NF-${\kappa}B$.

Synergistic Effect of Ethaselen and Selenite Treatment against A549 Human Non-small Cell Lung Cancer Cells

  • Xu, Wei;Ma, Wei-Wei;Zeng, Hui-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7129-7135
    • /
    • 2014
  • Background: In this study, we aimed to evaluate the growth inhibitory effect of the combination of ethaselen (BBSKE) and low fixed dose of selenite against A549 human non-small cell lung cancer cells in vitro. Materials and Methods: Growth inhibitory effects against A549 cells were determined by SRB assay. Combination index (CI) values were calculated based on Chou-Talalay median-effect analyses. Dose reduction index (DRI) values were applied to calculate dose reduction of selenite. Contents of free thiols and GSH were determined by DTNB assay and intracellular ROS levels by DCFH-DA fluorescence labeling. Results: Compared with BBSKE or selenite single treatment, the combined application of ethaselen and a low fixed dose of selenite shortened the onset time of sodium selenite, reduced $IC_{50}$ values, and increased the maximum inhibition rates, suggesting a possible molecular mechanism of the synergism. Obvious synergistic effects were observed after different times of combination treatment, especially after 24 h. Compared with selenite single treatment, dosage of selenite could be remarkably reduced in combination therapy to gain the same inhibitory effect on cell proliferation. Compared with BBSKE single treatment, the content of free thiols and GSH were significantly reduced and ROS levels greatly elevated in the combination group. For the combination treatment, cell viability increased as greater concentrations of GSH were added. Conclusions: All these results indicate that the combination treatment of BBSKE and selenite showed synergism to inhibit A549 cell proliferation in vitro, and also reduced the selenite dosage to mitigate its toxicity which is very meaningful for combination chemotherapy of lung cancer. The synergism was probably caused by the accelerated exhaustion of intracellular reductive substances, such as free thiols and GSH, which ultimately leads to enhanced oxidative stress and apoptosis.

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.