• Title/Summary/Keyword: Veterinary drugs

Search Result 356, Processing Time 0.028 seconds

Chemical Residues in Edible Tissues of Animals and Control Measures (축산식품의 유해물질 잔류와 그 관리방안)

  • 박종명;박근식
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.2
    • /
    • pp.17-22
    • /
    • 1991
  • Great attention form a public health aspect has centered on the safety of tissues residues of veterinary drugs and environmental contaminants, with intensification of animal husbandry, the use of veterinary drugs will become increasingly important. Heavy responsibility is placed on the veterinarian and livestock producer to observe the period for withdrawal of drug prior to slaughter to assure that illegal concentrations of drug residues in meat, milk and egg do not occur. Every nation has their own regulations in relation to the residues and the guidelines on the use of veterinary drugs to fulfil the regulations, and their own national residue programs to monitoring and eliminate illegal products. Good practice of veterinary drug by users and governmental surveillance programs are very important to ensure animal food safety.

  • PDF

Study on international accreditation for residue analysis laboratory (잔류물질분석의 국제공인시험기관 인정 관련 고찰)

  • Kim, MeeKyung;cho, Byung-Hoon;Kim, Dong-Gyu;Yun, Seon Jong;Lim, Chae-Mi;Park, Su-Jeong;Kim, Heuijin;Kim, Yeon Hee;Kim, Soo-Yeon;Yun, So Mi;Kwon, Jin-Wook;Son, Seong-Wan;Chung, Gab-Soo;Lee, Joo-Ho;Kang, Mun-Il
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Residual materials such as veterinary drugs, environmental contaminants, and pesticides are affecting food safety. High resolution techniques and quality controls are needed to analyze these materials from part per million to part per trillion quantities in food. In order to achieve quality results, standardized methods and techniques are required. Our laboratories were prepared to obtain a certificate of accreditation for ISO/IEC 17025 in the analytical criteria of animal drugs, dioxins, pesticides, and heavy metals. ISO together with IEC has built a strategic partnership with the World Trade Organization with the common goal of promoting a free and fair global trading system. ISO collaborates with the United Nations Organization and its specialized agencies and commissions, particularly those involved in the harmonization of regulations and public policies including the World Health Organization and CODEX Alimentarius for food safety measurement, management and traceability. Our goal was to have high quality analysts, proper analytical methods, good laboratory facilities, and safety systems within guidelines of ISO/IEC 17025. All staff members took requirement exams. We applied proficiency tests in the analysis of veterinary drugs (nitrofuran metabolites, sulfonamide and tetracyclines), dioxins, organophosphorus pesticides, and heavy metals (Cd, Pb, As) to the Food Analysis Performance Assessment Scheme (FAPAS) at Central Science Laboratory, Department for Environment Food and Rural Affairs (DEFRA), England. The results were very satisfactory. All documents were prepared, including system management, laboratory management, standard operational procedures for testing, reporting, and more. The criteria encompassed the requirements of ISO/IEC 17025:1999. Finally, the Korea Laboratory Accreditation Scheme (KOLAS) accredited our testing laboratories in accordance with the provisions of Article 23 of the National Standards Act. The accreditation will give us the benefit of becoming a regional reference laboratory in Asia.

Characteristics of Pasteurella multocia isolated from pneumonic lung lesions of swine ; antimicrobial susceptibility, plasmid profile and distribution of toxA (돼지 폐렴병소로부터 분리한 Pasteurella multocida에 관한 연구 : 항균제 감수성, plasmid profile 및 toxA 유전자 분포)

  • Shin, Na-ri;Park, Joo-youn;Park, Yong-ho;Yoo, Han-sang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1091-1098
    • /
    • 1999
  • Antimicrobial susceptibility, plasmid profiles and distribution of toxA gene were investigated in Pasteurella multocida isolated from pneumonic lung lesions of swine. The bacteria were highly susceptible to norfloxacin, cabenicillin, enrofloxacin and chloramphenicol, but resistant to colistin, sulfamethoxawle/trimethoprime, bacitracin, streptomycin. Sixty percentage of the isolates was resistant more than 2 drugs used in this experiment and 21 strains (23.6%) were resistant more than 5 drugs. This phenomenon meant that they had highly multi-drugs resistance. In the analysis of plasmid profiles, nineteen strains (47.5%) of 40 P multocida isolates harbored plasmids, ranging from 53.3kb to 2.49kb in size and the plasmid profiles could be classified into 5 groups. However, there was no relationship between the size and the profile of plasmid and the resistance pattern of antimicrobial agents. Thirty strains of 39 P multocida isolates (77%) investigated by PCR harbored toxA gene. This result suggested involvement of the ToxA protein expressed from the gene in pneumonic pasteurellosis of swine.

  • PDF

Flurbiprofen toxicity in 2 dogs (두 마리 개에서의 flurbiprofen 중독 2례)

  • Lee, Ye-Hyun;Nam, Eui-Hwa;Park, Seol-Hee;Song, Chi-Youn;Lee, Yong-Uk;Lee, Jong-Myung;Park, Jung-Hoon;Hwang, Cheol-Yong
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.3
    • /
    • pp.177-180
    • /
    • 2013
  • Two dogs were presented with melena, vomiting and depression after accidental swallowing of candy form of Strepsils (flurbiprofen), which is one of non-steroidal anti-inflammatory drugs used in human medicine for controlling a sore throat. These dogs had common signs of anemia induced by gastrointestinal ulceration and hemorrhage with azotemia and leukocytosis. The dogs were treated with blood transfusion, fluid therapy, proton-pump inhibitor, antiemetics, mucus protectant and antibiotic. Although most of clinical signs of two dogs were resolved, azotemic problem with evidence of renal injury have remained.

Development of Analytical Method and Monitoring of Veterinary Drug Residues in Korean Animal Products

  • Song, Jae-Sang;Park, Su-Jeong;Choi, Jung-Yun;Kim, Jin-Sook;Kang, Myung-Hee;Choi, Bo-Kyung;Hur, Sun Jin
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.319-325
    • /
    • 2016
  • This study was conducted to determine the residual amount of veterinary drugs such as meloxicam, flunixin, and tulathromycin in animal products (beef, pork, horsemeat, and milk). Veterinary drugs have been widely used in the rearing of livestock to prevent and treat diseases. A total of 152 samples were purchased from markets located in major Korean cities (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Ulsan and Jeju), including Jeju. Veterinary drugs were analyzed by liquid chromatography-tandem mass spectrometry according to the Korean Food Standards Code. The resulting data, which are located within 70-120% of recovery range and less than 20% of relative standard deviations, are in compliance with the criteria of CODEX. A total of five veterinary drugs were detected in 152 samples, giving a detection rate of approximately 3.3%; and no food source violated the guideline values. Our result indicated that most of the veterinary drug residues in animal products were below the maximum residue limits specified in Korea.

Development and Validation of Analytical Method for Nitroxoline in Chicken Using HPLC-PDA (HPLC-PDA를 이용한 닭고기 중 Nitroxoline 분석법 개발)

  • Cho, Yoon-Jae;Chae, Young-Sik;Kim, Jae-Eun;Kim, Jae-Young;Kang, Ilhyun;Lee, Sang-Mok;Do, Jung-Ah;Oh, Jae-Ho;Chang, Moon-Ik;Hong, Jin-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2013
  • BACKGROUND: Nitroxoline is an antibiotic agent. It is used for the treatment of the second bacterial infection by the colibacillosis, salmonellosis and viral disease of the poultry. When the nitroxoline is indiscreetly used, the problem about the abuse of the antibiotics can occur. Therefore, this study presented the residue analytical method of nitroxoline in food for the safety management of animal farming products. METHODS AND RESULTS: A simple, sensitive and specific method for nitroxoline in chicken muscle by high performance liquid chromatograph with PDA was developed. Sample extraction with acetonitrile, purification with SPE cartridge (MCX) were applied, then quantitation by HPLC with C18 column under the gradient condition with 0.1 % tetrabutylammonium hydroxide-phosphoric acid and methanol was performed. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.999, analysed from 0.02 to 0.5 mg/L concentration. Limit of quantitation in chicken muscle showed 0.02 mg/kg, and average recoveries ranged from 72.9 to 88.1 % in chicken muscle. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 12 % in 0.02 and 0.04 mg/kg. CONCLUSION(S): Newly developed method for nitroxoline in chicken muscle was applicable to food inspection with the acceptable level of sensitivity, repeatability and reproducibility.

Multi-class, Multi-residue Analysis of 59 Veterinary Drugs in Livestock Products for Screening and Quantification Using Liquid Chromatography-tandem Mass Spectrometry

  • Yu Ra Kim;Sun Young Park;Tae Ho Lee;Ji Young Kim;Jang-Duck Choi;Guiim Moon
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.288-309
    • /
    • 2022
  • BACKGROUND: The objective of this study was to develop a comprehensive and simple method for the simultaneous determination of 59 veterinary drug residues in livestock products for safety management. METHODS AND RESULTS: For sample preparation, we used a modified liquid extraction method, according to which the sample was extracted with 80% acetonitrile followed by incubation at -20℃ for 30 min. After centrifugation, an aliquot of the extract was evaporated to dryness at 40℃ and analyzed using liquid chromatography combined with tandem mass spectrometry. The method was validated at three concentration levels for beef, pork, chicken, egg, and milk in accordance with the Codex Alimentarius Commission/Guidelines 71-2009. Quantitative analysis was performed using a matrix-matched calibration. As a results, at least 52 (77.6%) out of 66 compounds showed the proper method validation results in terms of both recovery of the target compound and coefficient of variation required by Codex guidelines in livestock products. The limit of quantitation of the method ranged from 0.2 to 1119.6 ng g-1 for all matrices. CONCLUSION(S): This method was accurate, effective, and comprehensive for 59 veterinary drugs determination in livestock products, and can be used to investigate veterinary drugs from different chemical families for safety management in livestock products.