• 제목/요약/키워드: Vessel design

검색결과 1,083건 처리시간 0.028초

LNG 압력용기의 설계 (A LNG Pressure Vessel Design)

  • 김정위
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.28-37
    • /
    • 2000
  • In this paper the LNG vessel of the Moss type which is capable of lifting 15,261 tons is investigated in the view point of the pressure vessel preliminary design using the finite element method. The Pressure vessel design is based on the equivalent stress levels due to the internal pressure. The finite element model of the spherical pressure vessel is configured using 4 noded quadrilateral shell element. The finite element analysis program NASTRAN and ANSYS 5.5are implemented. The design is compared with the three kinds of the boundary condition : first, where the equator of the pressure vessel is fixed, and where the top and is fixed, and, the bottom end is fixed, respectively. A comparison is presented between the results obtained by the finite element model and by the prototype production model. Additionally just below position(case 1 & case 2) of equator ring was carried out by using ANSYS 5.5. The results show that the vessel design based on the stress is acceptable at the preliminary design.

  • PDF

해상교량의 설계선박 선정 (Design Vessel Selection of Maritime Bridges)

  • 이병화;배용귀;이성로;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.607-615
    • /
    • 2005
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the bridge. Method I in AASHTO LRFD bridge design specifications is a semi-deterministic analysis procedure for determining the design vessel. Method ll which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

  • PDF

석유화학 플랜트의 대형 압력용기에 대한 동흡진기의 설계 (Design of a Dynamic Absorber for the Large-Size Pressure Vessel of the Petrochemical Plant)

  • 김민철;이부윤;김원진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.743-749
    • /
    • 2005
  • In this work, two dynamic absorbers are introduced and designed to reduce the vibration of the large-size pressure vessel of a reactor for a petrochemical plant. The vibration modes and harmonic responses of the vessel are firstly analyzed by the finite element method. On the basis of the analyzed results, two dynamic absorbers are designed by a simple design theory. Furthermore, an optimization process is executed and an optimal design of the dynamic absorber is obtained to improve performance and structural safety of the vessel. As a result, the maximum displacement and stress of the vessel is decreased about 85% and 65% respectively, the design criteria being satisfied.

  • PDF

석유화학 플랜트의 대형 압력용기에 대한 동흡진기의 최적설계 (Optimal Design of a Dynamic Absorber for the Large-size Pressure Vessel of the Petrochemical Plant)

  • 김민철;이부윤;김원진
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.612-619
    • /
    • 2005
  • In this work. two dynamic absorbers are introduced and designed to reduce the vibration of the large-size pressure vessel of a reactor for a petrochemical plant. The vibration modes and harmonic responses of the vessel are firstly analyzed by the finite element method. On the basis of the analyzed results, two dynamic absorbers are designed by a simple design theory. Furthermore, an optimization process is executed and an optimal design of the dynamic absorber is obtained to improve performance and structural safety of the vessel. As a result, the maximum displacement and stress of the vessel is decreased about $85\%$ and $65\%$ respectively, the design criteria being satisfied.

단열재가 극저온 용기의 내부지지대 구조설계에 미치는 영향 (A Study on Thermal Insulator Effect for Structure Design of Internal Support on Cryogenic Vessel)

  • 김두호;지현진;김기열;조성백
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.524-531
    • /
    • 2011
  • The cryogenic vessel, storing a liquified solutions as LOX and $LN_2$, consists of a external vessel, internal vessel, thermal insulator and internal support. The internal support should be satisfied with mechanical strength not only to support weight of internal tank but also to maintain uniform space between external and internal tank in spite of external mechanical shock. However, excessive structure design of internal supports is able to increase the amount of heat conduction and the rate of vaporization. The thermal insulator, filled with space between a external and internal vessel, reduces the rate of heat transfer and guarantees the standing time of cryogenic vessel. Especially powder type of insulator has low thermal conductivity and reduce the specification of structure design. In order to evaluate the effect of insulator on structure design, the experiment set-up simulated cryogenic vessel was tested in shock environment according to thermal insulator. As a result, the behavior of internal support under external shock was understood and the design criteria was able to be suggested.

탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가 (Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber)

  • 김건회
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

초심해 용 유전개발선의 설계 (Design of Field Development Ship for Ultra-Deepwater)

  • Park, H.S.;S.W. Yoon;I.M. Song
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.87-92
    • /
    • 2001
  • This technical note is intended to introduce a state-of-the-art offshore construction vessel. This unique vessel is for multi-purpose Field Development Ship (FDS) for deepwater to ultra-deepwater. The FDS is a construction vessel with dynamic positioning (DP) system intended to develop offshore oil and gas field in water depth up to 3000 m. The design criteria and main capacities of the vessel are discussed.

  • PDF

면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가 (Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel)

  • 구경회
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

PGSFR 소듐냉각고속로 원자로용기 설계 및 구조건전성 평가 (Structural design and integrity evaluations for reactor vessel of PGSFR sodium-cooled fast reactor)

  • 구경회;김성균
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.70-77
    • /
    • 2016
  • In this paper, the structural design and integrity evaluations for a reactor vessel of PGSFR sodium-cooled fast reactor(150MWe) are carried out in compliance with ASME BPV III, Division 5 Subsection HB. The reactor vessel is designed with a direct contact of primary sodium coolant to its inner surface and has a double vessel concept enclosing by containment vessel. To assure the structural integrity for 60 years design lifetime and elevated operating temperature of $545^{\circ}C$, which can invoke creep and creep-fatigue damage, the structural integrity evaluations are carried out in compliance with the ASME code rules. The design loads considered in this evaluations are primary loads and operation thermal cycling loads of normal heat-up and cool-down. From the evaluations, the PGSFR reactor vessel satisfies the ASME code limits but it was found that there is a little design margin of creep damage for inner surface at the region of cold pool free surface.

경제성 최적화 기법에 의한 연근해 어선설계에 관한 연구 (A Study on the Basic-Design of Inside-Sea Fishing Vessel by Economic Optimization Technique)

  • 박제웅
    • 수산해양기술연구
    • /
    • 제31권3호
    • /
    • pp.287-295
    • /
    • 1995
  • fishing boat is a specialized vessel which is intended to perform certain well defined tasks. Its size, deck-layout, carrying capacity and equipment are all related to its function in carrying out its planned operations. Therefore the process of fishing boat design is inherently combined with optimization of the design variables called the economic optimization criteria. Optimization then is a process in which minimum value of weight or cost is established through evaluation of consecutive designs in which one or more design parameters are varied. This paper is to study the basic-design of Stow-net fishing vessel in the Mok-Po region. The main task is developed the preliminary design model of engineering economic system in order to use optimization techniques from operation research the design problem needs to be expressed in terms of objective function and numerous constrains like : speed, fish hold capacity, fishing range, displacement and weight, ratio of main dimensions, etc. The objective function represents the criterion which is NPV such as the ratio of revene/cost. When using computers of limited capacity like P/C, the developed basic-design model of the economic optimization procedure must be simplified to V, Cb, L/B, Dv, Db and less than 15 constraint equations. The main conclusions of this study have attempted to show that economic considerations are essential in Stow-net fishing vessel basic design and operations, and that techno-economic evaluation is an important tool for the design of Stow-net fishing vessel in 69ton and 79ton.

  • PDF