• Title/Summary/Keyword: Vessel Segmentation

Search Result 51, Processing Time 0.026 seconds

Improved Lung and Pulmonary Vessels Segmentation and Numerical Algorithms of Necrosis Cell Ratio in Lung CT Image (흉부 CT 영상에서 개선된 폐 및 폐혈관 분할과 괴사 세포 비율의 수치적 알고리즘)

  • Cho, Joon-Ho;Moon, Sung-Ryong
    • Journal of Digital Convergence
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 2018
  • We proposed a numerical calculation of the proportion of necrotic cells in pulmonary segmentation, pulmonary vessel segmentation lung disease site for diagnosis of lung disease from chest CT images. The first step is to separate the lungs and bronchi by applying a three-dimensional labeling technique from a chest CT image and a three-dimensional region growing method. The second step is to divide the pulmonary vessels by applying the rate of change using the first order polynomial regression, perform noise reduction, and divide the final pulmonary vessels. The third step is to find a disease prediction factor in a two-step image and calculate the proportion of necrotic cells.

A Study on Image Preprocessing Methods for Automatic Detection of Ship Corrosion Based on Deep Learning (딥러닝 기반 선박 부식 자동 검출을 위한 이미지 전처리 방안 연구)

  • Yun, Gwang-ho;Oh, Sang-jin;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.573-586
    • /
    • 2022
  • Corrosion can cause dangerous and expensive damage and failures of ship hulls and equipment. Therefore, it is necessary to maintain the vessel by periodic corrosion inspections. During visual inspection, many corrosion locations are inaccessible for many reasons, especially safety's point of view. Including subjective decisions of inspectors is one of the issues of visual inspection. Automation of visual inspection is tried by many pieces of research. In this study, we propose image preprocessing methods by image patch segmentation and thresholding. YOLOv5 was used as an object detection model after the image preprocessing. Finally, it was evaluated that corrosion detection performance using the proposed method was improved in terms of mean average precision.

Attention Aware Residual U-Net for Biometrics Segmentation (생체 인식 인식 시스템을 위한 주의 인식 잔차 분할)

  • Htet, Aung Si Min;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.300-302
    • /
    • 2022
  • Palm vein identification has attracted attention due to its distinct characteristics and excellent recognition accuracy. However, many contactless palm vein identification systems suffer from the issue of having low-quality palm images, resulting in degradation of recognition accuracy. This paper proposes the use of U-Net architecture to correctly segment the vascular blood vessel from palm images. Attention gate mechanism and residual block are also utilized to effectively learn the crucial features of a specific segmentation task. The experiments were conducted on CASIA dataset. Hessian-based Jerman filtering method is applied to label the palm vein patterns from the original images, then the network is trained to segment the palm vein features from the background noise. The proposed method has obtained 96.24 IoU coefficient and 98.09 dice coefficient.

Segmentation of Arterial Vascular Anatomy around the Stomach based on the Region Growing Based Method

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 2014
  • Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.

Coronary Artery Stenosis Quantification for Computed Tomography Angiography Based on Modified Student's t-Mixture Model

  • Sun, Qiaoyu;Yang, Guanyu;Shu, Huazhong;Shi, Daming
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.662-671
    • /
    • 2017
  • Coronary artery disease (CAD) is a major cause of death in the world. As a non-invasive imaging modality, computed tomography angiography (CTA) is now usually used in clinical practice for CAD diagnosis. Precise quantification of coronary stenosis is of great interest for diagnosis and treatment planning. In this paper, a novel cluster method based on a Modified Student's t-Mixture Model is applied to separate the region of vessel lumen from other tissues. Then, the area of the vessel lumen in each slice is computed and the estimated value of it is fitted with a curve. Finally, the location and the level of the most stenoses are captured by comparing the calculated and fitted areas of the vessel. The proposed method has been applied to 17 clinical CTA datasets and the results have been compared with reference standard degrees of stenosis defined by an expert. The results of the experiment indicate that the proposed method can accurately quantify the stenosis of the coronary artery in CTA.

Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model (복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.266-274
    • /
    • 2009
  • An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.

Evaluation on Radioactive Waste Disposal Amount of Kori Unit 1 Reactor Vessel Considering Cutting and Packaging Methods (고리 1호기 원자로 압력용기 절단과 포장 방법에 따른 처분 물량 산정)

  • Choi, Yujeong;Lee, Seong-Cheol;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.123-134
    • /
    • 2016
  • Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation.

A Study on an Image Processing for Segmentation of Liver Arteriography Using Medical Image(MDCT) (의료명상(MDCT)을 이용한 간 동맥의 영역 분할에 관한 영상처리)

  • Choi Seung-Kwon;Cho Yong-Hwan;Lee Byong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.305-305
    • /
    • 2005
  • In modern society, diseases are variously found. Also, disease can be fatal once starting attack or one misses the proper medical examination time. According to the development of society, our liver settled on exhausted status which causes high disease development ratio because of excess business, smoking and drinking. Especially liver related disease cannot be recovered, therefore it depends on internal organ transplant surgery. In this paper, calculate volume from rendered liver shape using 3-dimensional image processing method and we develop an image processing method for the image acquired by MDCT, that can simulate incision line decision according to blood vessel segmentation that can be used on liver transplant operation. Simulation results which adopt automatic liver segment abstraction algorithm show that it can help surgical operation.

New Seed Detection by Shape Analysis for Construction of Vascular Structures

  • Shim, Hack-Joon;Lee, Hyun-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.427-433
    • /
    • 2010
  • Although tracking methods are efficient and popular for vessel segmentation, they require a seed to initiate an instance of tracking. In this paper, a new method to detect new seeds for tracking of arterial segments from CT angiography (CTA) and to construct a vascular structure is proposed. The proposed algorithm is based on shape analysis of connected components in a volume of interest around a vessel segment which was already extracted by tracking. The eigenvalues of the covariance matrix are used as the shape features for detection. The experimental results on actual clinical data showed that the results totally revealed the arterial tree not hindered by bone or veins. In visual comparison to a method which combines registration and subtraction of both pre-contrast and post-contrast CT volumes, the proposed method produced comparable results to the reference method and were confirmed of its feasibility for clinical use of reducing the cost and burden of patients.

Lung and Airway Segmentation using Morphology Information and Spline Interpolation in Lung CT Image (흉부 CT 영상의 형태학적 정보 및 Spline 보간법을 이용한 폐 및 기관지 분할 알고리즘)

  • Cho, Joon-Ho;Kim, Jung-Chul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.702-712
    • /
    • 2013
  • In this paper, we proposed an algorithm that extracts the airway and lung without loss of information in spite of the pulmonary vessel and nodules of the chest wall in the chest CT images. We use a mask image in order to improve the performance and to save processing time of airway and lung segmentation. In the second step, by converting left and right lungs to binary image using the morphological information, we have removed the solitary pulmonary nodule to identify the value of the threshold lung and the chest wall. The last step is to connect the outer shell of the lung with cubic Spline interpolation by adding the perfect pixel and computing the distance of the removed part. Experimental results using Matlab verified that the proposed method could overcome the drawbacks of the conventional methods.