Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.17
no.4
/
pp.437-445
/
2019
After the permanent shutdown of K1 in 2017, decommissioning processes have attracted great attention. According to the current decommissioning roadmap, the dismantling of the activated components of K1 may start in 2026, following the removal of its spent fuel. Since the reactor vessel (RV) and reactor vessel internal (RVI) of K1 contain massive components and are relatively highly activated, their decommissioning process should be conducted carefully in terms of radiological and industrial safety. For achieving maximum efficiency of nuclear waste management processes for K1, we present activation analysis of the segmentation process and waste classification of the RV and RVI components of K1. For RVI, the active fuel regions and some parts of the upper and lower active regions are classified as intermediate-level waste (ILW), while other components are classified as low-level waste (LLW). Due to the RVI's complex structure and high activation, we suggest various underwater segmentation techniques which are expected to reduce radiation exposure and generate approximately nine ILW and nineteen very low level waste (VLLW)/LLW packages. For RV, the active fuel region and other components are classified as LLW, VLLW, and clearance waste (CW). In this case, we suggest in-situ remote segmentation in air, which is expected to generate approximately forty-two VLLW/LLW packages.
Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
Proceedings of the KIEE Conference
/
2005.10b
/
pp.3-5
/
2005
Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.
의료영상에서의 혈관의 분할은 심혈관계질환의 진단 및 시술을 위한 3차원 가시화 및 가상내시경을 하기위한 필수 선행 단계로 이에 대한 연구가 많이 이루어 지고 있다. 조영제를 투여한 환자의 CT데이터에서 혈관분할의 가장 큰 문제점은 혈관의 밝기값이 뼈의 밝기값과 비슷하기 때문에 기존의 3차원 SRG방법으로 분할하는 경우 새나감의 문제를 가지고 있었다. 본 논문에서는 Cubic SRG라는 방법을 통해 기존의 3차원 SRG가 가지는 깔끔한 분할결과와 적응적인 특성등의 여러 장점을 그대로 취하며 Cubic이라는 구조적 특징을 이용하여 혈관을 빠르고 강인하게 분할하는 방법을 제안한다. Cubic SRG는 SRG가 픽셀단위의 성장을 통해 동질 영역을 분할하는 방법을 사용함에 반해 Cubic이라는 부피 단위를 지정하여 이를 SRG의 픽셀과 같이 퍼트리는 방식으로 기존의 3차원 SRG에 비해 2$\sim$5배 정도의 빠른 수행속도를 보이며 3차원 SRG의 장점인 적응적인 특성을 그대로 가질수 있도륵 구현되었다. 또한 복셀들을 Cubic이라는 단위로 묶음으로서 혈관의 구조적인 분석을 수행하여 혈관을 트리형태의 구조로 그룹화가 가능하기 때문에 혈관을 가지별로 분할하기에 용이한 특징을 가지도록 하였으며, 이를 통해 새나감이 시작된 가지를 찾아서 잘라내는 방법을 통하여 SRG의 가장 큰 문제인 새나감 방법을 효과적으로 해결하는 방법을 제시한다. 최종적으로 위의 방법을 기본으로 하여 적응형 임계값 기반의 분할 방법을 혼합하여 사용자가 지정한 두 지점사이의 혈관을 강인하게 분할할수 있도록 구현하였고, 제안한 방법으로 여러 환자의 CT데이터에 실험하여 좋은 결과를 얻을 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.29-37
/
2021
In this paper, we propose a deep learning-based retinal vessel segmentation model for handling multi-scale information of fundus images. we integrate the selective kernel convolution into U-Net-based convolutional neural network. The proposed model extracts and segment features information with various shapes and sizes of retinal blood vessels, which is important information for diagnosing eye-related diseases from fundus images. The proposed model consists of standard convolutions and selective kernel convolutions. While the standard convolutional layer extracts information through the same size kernel size, The selective kernel convolution extracts information from branches with various kernel sizes and combines them by adaptively adjusting them through split-attention. To evaluate the performance of the proposed model, we used the DRIVE and CHASE DB1 datasets and the proposed model showed F1 score of 82.91% and 81.71% on both datasets respectively, confirming that the proposed model is effective in segmenting retinal blood vessels.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.12
/
pp.1514-1519
/
2019
IVUS is an intra-operative imaging modality that facilitates observing and appraising the vessel wall structure of the human coronary arteries. IVUS is regularly used to locate the atherosclerosis lesions in the coronary arteries. Auto-segmentation of the vessel structure is important to detect the disorder of coronary artery. In this paper, we propose a simple strategy to extract Intima/Adventitia area effectively using fuzzy binarization from intravascular images. The proposed method apply fuzzy binarization to find the adventitia but apply average binarization to locate the intima since they have different homogeneity of pixel intensity comparing with the environment. In this paper, we demonstrate an effective auto-segmentation method for detecting the interior/exterior of the vessel walls by differentiating the fuzzy binarization result and average binarization result from IVUS image. Important statistics such as Intima-Media Thickness (IMT) or volume of a target area can be easily computed from result.
It is essential for living donor liver transplantation that surgeon must understand the hepatic vessel structure to improve the success rate of operation. In this paper, we extract the liver boundary without other surrounding structures such as heart, stomach, and spleen using the contrast enhanced MDCT liver image sequence. After that, we extract the major hepatic veins (left, middle, right hepatic vein) with morphological filter after review the basic structure of hepatic vessel which reside in segmented liver image region. The purpose of this study is provide the overall status of transplantation operation with size estimation of resection part which is dissected along with the middle hepatic vein. The method of liver extraction is as follows: firstly, we get rid of background and muscle layer with gray level distribution ratio from sampling process. secondly, the coincident images match with unit mesh image are unified with resulted image using the corse coordinate of liver and body. thirdly, we extract the final liver image after expanding and region filling. Using the segmented liver images, we extract the hepatic vessels with morphological filter and reversed the major hepatic vessels only with a results of ascending order of vessel size. The 3D reconstructed views of hepatic vessel are generated after applying the interpolation to provide the smooth view. These 3D view are used to estimate the dissection line after identify the middle hepatic vein. Finally, the volume of resection region is calculated and we can identify the possibility of successful transplantation operation.
Journal of the Korea Society of Computer and Information
/
v.17
no.3
/
pp.51-57
/
2012
Hepatic vessel tree is the key structure for hepatic disease diagnosis and liver surgery planning. Especially, it is used to evaluate the donors' and recipients' liver for the LDLT(Living Donors Liver Transplantation) and estimate the volumes of left and right hepatic lobes for securing their life in the LDLT. In this study, we propose a method to apply canny edge detection that is not affected by noise to the liver images for automatic segmentation of hepatic vessels tree in contrast abdominal MDCT image. Using histograms and average pixel values of the various liver CT images, optimized parameters of the Canny algorithm are determined. It is more time-efficient to use the common parameters than to change parameters manually according to CT images. Candidates of hepatic vessels are extracted by threshold filtering around the detected the vessel edge. Finally, using a system which detects the true-negatives and the false-positives in horizontal and vertical direction, the true-negatives are added in candidate of hepatic vessels and the false-positives are removed. As a result of the process, the various hepatic vessel trees of patients are accurately reconstructed in 3D.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.