• Title/Summary/Keyword: Vessel Segmentation

Search Result 51, Processing Time 0.026 seconds

An Automatic Algorithm for Vessel Segmentation in X-Ray Angiogram using Random Forest (랜덤 포레스트를 이용한 X-선 혈관조영영상에서의 혈관 자동 영역화 알고리즘)

  • Jung, Sunghee;Lee, Soochahn;Shim, Hackjoon;Jung, Ho Yub;Heo, Yong Seok;Chang, Hyuk-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.79-85
    • /
    • 2015
  • The purpose of this study is to develop an automatic algorithm for vessel segmentation in X-Ray angiogram using Random Forest (RF). The proposed algorithm is composed of the following steps: First, the multiscale hessian-based filtering is performed in order to enhance the vessel structure. Second, eigenvalues and eigenvectors of hessian matrix are used to learn the RF classifier as feature vectors. Finally, we can get the result through the trained RF. We evaluated the similarity between the result of proposed algorithm and the manual segmentation using 349 frames, and compared with the results of the following two methods: Frangi et al. and Krissian et al. According to the experimental results, the proposed algorithm showed high similarity compared to other two methods.

Maritime region segmentation and segment-based destination prediction methods for vessel path prediction (선박 이동 경로 예측을 위한 해상 영역 분할 및 영역 단위 목적지 예측 방법)

  • Kim, Jonghee;Jung, Chanho;Kang, Dokeun;Lee, Chang Jin
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.661-664
    • /
    • 2020
  • In this paper, we propose a maritime region segmentation method and a segment-based destination prediction method for vessel path prediction. In order to perform maritime segmentation, clustering on destination candidates generated from the past paths is conducted. Then the segment-based destination prediction is followed. For destination prediction, different prediction methods are applied according to whether the current region is linear or not. In the linear domain, the vessel is regarded to move constantly, and linear prediction is applied. In the nonlinear domain with an uncertainty, we assume that the vessel moves similarly to the most similar past path. Experimental results show that applying the linear prediction and the prediction method using a similar path differently depending on the linearity and the uncertainty of the path is better than applying one of them alone.

Pulmonary vascular Segmentation and Refinement On the CT Scans (컴퓨터 단층 촬영 영상에서의 폐혈관 분할 및 정제)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.591-597
    • /
    • 2012
  • Medical device performance has been advanced while images are expected to be acquired with further higher quality and pertinent applicability as images have been increasing in importance in analyzing major organs. Recent high frequency of image processing by MATLAB in image analysis area accounts for the intent of this study to segment pulmonary vessels by means of MATLAB. This study is to consist of 3 phases including pulmonary region segmentation, pulmonary vessel segmentation and three dimensional connectivity assessment, in which vessel was segmented, using threshold level, from the pulmonary region segmented, vessel thickness was measured as two dimensional refining process and three dimensional connectivity was assessed as three dimensional refining process. It is expected that MATLAB-based image processing should contribute to diversity and reliability of medical image processing and that the study results may lay a foundation for chest CT images-related researches.

Performance evaluation of vessel extraction algorithm applied to Aortic root segmentation in CT Angiography (CT Angiography 영상에서 대동맥 추출을 위한 혈관 분할 알고리즘 성능 평가)

  • Kim, Tae-Hyong;Hwang, Young-sang;Shin, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • World Health Organization reported that heart-related diseases such as coronary artery stenoses show the highest occurrence rate which may cause heart attack. Using Computed Tomography angiography images will allow radiologists to detect and have intervention by creating 3D roadmapping of the vessels. However, it is often complex and difficult do reconstruct 3D vessel which causes very large amount of time and previous researches were studied to segment vessels more accurate automatically. Therefore, in this paper, Region Competition, Geodesic Active Contour (GAC), Multi-atlas based segmentation and Active Shape Model algorithms were applied to segment aortic root from CTA images and the results were analyzed by using mean Hausdorff distance, volume to volume measure, computational time, user-interaction and coronary ostium detection rate. As a result, Extracted 3D aortic model using GAC showed the highest accuracy but also showed highest user-interaction results. Therefore, it is important to improve automatic segmentation algorithm in future

Blood Vessel Enhancement by Directed Diffusion

  • Intajag, S.;Tipsuwanporn, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.101-106
    • /
    • 2004
  • In this paper, a blood vessel in an angiographic image, which plays an importance role in the diagnose diseases including in the eyes, brain and heart, is enhanced by using a directed diffusion technique. A fundamental component of the angiographic analysis is vessel segmentation that the proposed method provides a preprocessing of the image into a form suitable for human analysis, or more importantly, for machine analysis such the segmentation. Vessel enhancement is a challenging problem due to the complex nature of vascular trees and to imaging imperfections. Some parts of the inherent imperfections in angiography are the intensity inhomogeneity between the larger and smaller vessels, and another imperfection is the leakage of contrast agent into the background tissue that provides to low contrast between vessels and tissue. In the proposed scheme, the directed diffusion solves the problem by formulating a local geometric structure, which consists of direction and scale of the blood vessels. The diffusion process uses the local structure to enhance by a diffusivity tensor. The proposed algorithm can be applied to maintain sharpness and coherence-smooth the intra-regions into homogeneity better than traditional diffusion methods, which are Gaussian regulation and coherence enhancing diffusion.

  • PDF

Retinal Blood Vessel Segmentation using Deep Learning (딥러닝 기법을 이용한 망막 혈관 분할)

  • Kim, Beomsang;Lee, Ik Hyun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 2019
  • Diabetic retinopathy is a complicated form of diabetes due to circulatory disorder in the peripheral blood vessels of the retina. We segment the microvessel for diagnosing diabetic retinophathy. The conventional methods using filter and features can segment the thick blood vessels, but it has relatively weak for segmenting fine blood vessels. In pre-processing step, noise reduction filter and histogram equalization are applied to suppress the noise and enhance the image contrast. Then, deep learning technique is used for pixel-by-pixel segmentation. The accuracy of conventional methods is between 90% to 94%, while the proposed method has improved as 95% accuracy. There is a problem of segmentation error around the optic disc and exudate due to the network depth. However the accuracy can be improved by modifying the network architecture in the future.

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging (메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성)

  • Jang, Yeonggul;Kim, Dong Hwan;Jeon, Byunghwan;Han, Dongjin;Shim, Hackjoon;Chang, Hyuk-jae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2016
  • Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.