• Title/Summary/Keyword: Very-low-boron

Search Result 25, Processing Time 0.035 seconds

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

The Analysis of p-MOSFET Performance Degradation due to BF2 Dose Loss Phenomena

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Continued scaling of MOS devices requires the formation of the ultra shallow and very heavily doped junction. The simulation and experiment results show that the degradation of pMOS performance in logic and SRAM pMOS devices due to the excessive diffusion of the tail and a large amount of dose loss in the extension region. This problem comes from the high-temperature long-time deposition process for forming the spacer and the presence of fluorine which diffuses quickly to the $Si/SiO_{2}$ interface with boron pairing. We have studied the method to improve the pMOS performance that includes the low-energy boron implantation, spike annealing and device structure design using TCAD simulation.

Thermal Diffusion Process Modeling with Adaptive Finite Volume Method (적응성 유한체적법을 적용한 다차원 확산공정 모델링)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.19-21
    • /
    • 2004
  • This paper presents a 3-dimensional diffusion simulation with adaptive solution strategy. The developed diffusion simulator VLSIDIF-3 was designed to re-refine areas. Refine scheme was calculated by the difference of doping concentration between any of two nodes. Each element is greater than tolerance and redo diffusion process until error is tolerable. Numerical experiment in low doping diffusion problem showed that this adaptive solution strategy is very efficient in both memory and time, and expected this scheme would be more powerful in complex diffusion model.

  • PDF

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

Influence of Manufacturing Conditions for the Life Time of the Boron-Doped Diamond Electrode in Wastewater Treatment (폐수처리용 붕소 도핑 다이아몬드 전극의 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Kim, Kyeong-Min;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from $75{\sim}106{\mu}m$ (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.

Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis- (Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여-)

  • Lee, Yung-Nok;Chin, Pyung;Sim, Woong-Seop
    • Korean Journal of Microbiology
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF

Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode (아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

Ultra shallow $p^{+}$n junction formation using the boron diffusin form epi-co silicide (에피 코발트 실리사이드막으로 부터의 붕소 확산을 이용한 극저층 $p^{+}$n 접합 형성)

  • 변성자;권상직;김기범;백홍구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.134-142
    • /
    • 1996
  • The epi-CoSi$_{2}$ layer was formed by alloying a Co(120$\AA$)/Ti(50$\AA$) bilayer. In addition, the ultra shallow p$^{+}$n junction of which depth is about not more than 40nm at the background concentration, 10$^{18}$atoms/cm$^{3}$ could be formed by annealing (RTA-II) the ion implanted epi-silicide. When the temperature of RTA-I is as low as possible and that of RTA-II is moderate, the p$^{+}$n junction that has low leakage current and stable epi-silicide layer could be obtained. That is, when th econdition of TRA-I was 900$^{\circ}C$/20sec and that of RTA-II was 900$^{\circ}C$/10sec, the reverse leakage current was as high as 11.3$\mu$A/cm$^{2}$ at -5V. The surface of CoSi$_{2}$ appeared considerably rough. However, when the conditon of RTA-I was 800$^{\circ}C$/20sec or 700$^{\circ}C$/20sec, the leakage currents were as low as 8.3nA/cm$^{2}$ and 9.3nA/cm$^{2}$, respectively and also the surfaces appeared very uniform.

  • PDF

Design of a Medical Reactor Generating High Quality Neutron Beams for BNCT

  • Park, Jeong-Hwan;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.427-432
    • /
    • 1997
  • Boron neutron capture therapy(BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. More is known now about the radiation biology of BNCT, which has reemerged as a potentially useful method for preferential irradiation of tumors. We design a square reactor (that can easily be reconfigured into polygonal reactors as the need arises) with four slab type assemblies to produce high quality epithermal neutron beans and thermal neutron beams jot use in neutron capture therapy. With a low operating power of 300kW, the heat generated in the core can be removed by natural convection through a pool of tight water. The proposed design in this study could be constructed for a dedicated clinical BNCT facility that would operate very safely.

  • PDF

Nitrate Removal of Flue Gas Desulfurization Wastewater by Autotrophic Denitrification

  • Liu, L.H.;Zhou, H.D.;Koenig, A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.46-52
    • /
    • 2007
  • As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.

  • PDF