• Title/Summary/Keyword: Very-Low-Level Radioactive waste

Search Result 42, Processing Time 0.024 seconds

An Approach to the Localization of Technology for a Transport and Storage Container for Very Low-Level Radioactive Liquid Waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Kim, Hee Reyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2022
  • The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.

Review of the Acceptance Criteria of Very Low Level Radioactive Waste for the Disposal of Decommissioning Waste (극저준위 해체폐기물 처분을 위한 방사성폐기물 인수기준 분석)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • In order to use the nuclear energy as the sustainable energy source, the safe and efficient management of radioactive wastes generated from the nuclear fuel cycle including NPP decommissioning is one of the most important factors. The establishment of acceptance criteria for very low level radioactive wastes generated from decommissioning of nuclear power plant in a large quantity is seemed to play a key role for developing a radioactive wastes disposal strategy as well as NPP decommissioning strategy. In this thesis, we want to review the acceptance criteria of low-and-intermediate-level radioactive wastes in this country through the analysis of other country's acceptance criteria.

Analysis on the International Trends in Safe Management of Very Low Level Waste Based upon Graded Approach and Their Implications (차등접근법에 근거한 극저준위폐기물의 안전관리 국제동향 및 시사점에 대한 고찰)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2011
  • Recently, International Atomic Energy Agency and major leading countries in radioactive waste management tend to subdivide the categories of radioactive waste based upon risk-graded approach. In this context, the category of very low level waste has been newly introduced, or optimized management options for this kind of waste have been pursued in many countries. The application of engineered surface landfill type facilities dedicated to dispose of very low level waste has been gradually expanded, and it was analyzed that their design concept of isolation has been much advanced than those of the old fashioned surface trench-type disposal facilities for low and intermediate level waste, which were usually constructed in 1960's. In addition, the management options for very low level waste in major leading countries are varied depending upon and interfaced with the affecting factors such as: national framework for clearance, legal and practical availability of low and intermediate level waste repository and/or non-nuclear waste landfill, public acceptance toward alternative waste management options, and so forth. In this regard, it was concluded that optimized long-term management options for very low level waste in Korea should be also established in a timely manner through comprehensive review and discussions, in preparation of decommissioning of large nuclear facilities in the future, and be implemented in a systematic manner under the framework of national policy and management plan for radioactive waste management.

Numerical Simulation of Rainfall Infiltration Into Disposal Cover of Performance Test Facility

  • Mijin Kwon;Seho Choi;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • Disposal cover as an engineered barrier of a near-surface disposal facility for low and very low-level radioactive waste is composed of a multi-layer to isolate radioactive waste from environmental influences for the long term. To acquire a realistic forecast for the post-closure period of the disposal facility, it is essential to carry out long-term experimental research in a similar condition to the actual disposal environment. Hence, a performance test facility of the disposal cover was constructed in Gyeongju low and intermediate level radioactive waste disposal center in 2022. The constructed performance test facility has differences from the material properties presented in the design. These differences are factors that affect the prevent rainfall infiltration, which is one of the important roles of the disposal cover. Therefore, in this study, a numerical simulation of rainfall infiltration into the performance test facility was performed for the designed case and the actual constructed case. To simulate the behavior of water infiltration, the FEFLOW software based on the finite element method is used. Through the analysis of numerical simulation results, it is confirmed that the hydraulic conductivity of the material constituting the multi-layer of the disposal cover greatly influences the amount of water infiltration.

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.