• Title/Summary/Keyword: Vertical motion response

검색결과 186건 처리시간 0.026초

Vertical uplift of suspension equipment due to hanger slackening: Experimental and numerical investigation

  • Yang, Zhenyu;He, Chang;Mosalam, Khalid M.;Xie, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.735-745
    • /
    • 2022
  • The suspension thyristor valve can generate tremendous vertical acceleration responses in layers and large tension forces in hangers. A shaking table test of a scaled-down model of thyristor valves suspended on a hall building is performed to qualify the risk of vertical uplift of two representative types of valves, the chain valve and the rigid valve. Besides, an analytical model is established to investigate the source of the slackening of hangers. The test results show that the valves frequently experience a large vertical acceleration response. The soft spring joint can significantly reduce acceleration, but is still unable to prevent vertical uplift of the chain valve. The analytical model shows a stiffer roof and inter-story connection both contribute to a higher risk of vertical uplift for a rigid valve. In addition, the planar eccentricity and short hangers, which result in torsional motion of the valve, increase the possibility of vertical uplift for a chain valve. Therefore, spring joints with additional viscous dampers and symmetric layout in each layer are recommended for the rigid and chain valve, respectively, to prevent the uplift of valves.

Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.53-58
    • /
    • 1998
  • In this paper, we study the response of several anisotropic systems to buried transient line loads. The problem is mathematically formulated based on the equations of motion in the constitutive relations. The load is in form of a normal stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in reference coordinate system, where the line load is coincident with symmetry axis of the orthotrioic material. Then the equation of motion is transformed with respect to general coordiante system with azimuthal angle by using transformation tensor. The load is first described as a body force in the equations of the motion for the infinite media and then it is mathematically characterized. Subsequently the results for semi-infinite spaces is also obtained by using superposition of the infinite medium solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are obtained by using Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

가감속 형태에 叫른 운동오차의 영향에 대한 연구 (A Study on the Effects of Motion Errors for Acceleration/Deceleration Types)

  • 신동수;곽경남;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.671-677
    • /
    • 1996
  • This paper proposes a study on the effects of motion errors for acceleration/ deceleration types. The proposed motion errors are consisted of two errors : one due to transient response of servomechanism and the other due to gain mismatching of positioning servo motor. They are derived from using laplace transformation for the block diagram of general purpose feed drive system. In order to minimize them, the paper proposes second order polynomial regression model by using orthogonal array method which describes one of experimental methodolgies. The validity and reliability of the study was veri lied on a vertical machining center equipped with FANUC 0MC through a series of experiments and analyses.

  • PDF

Numerical study on the effects of seismic torsional component on multistory buildings

  • Ouazir, Abderrahmane;Hadjadj, Asma;Benanane, Abdelkader
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, the influence of the rotational component, about a vertical axis, of earthquake ground motion on the response of building structures subjected to seismic action is considered. The torsional component of ground motion is generated from the records of translational components. Torsional component of ground motion is then, together with translational components, applied in numerical linear dynamic analysis of different reinforced concrete framed structure of three stories buildings. In total, more than 40 numerical models were created and analyzed. The obtained results show clearly the dependence of the effects of the torsional seismic component on structural system and soil properties. Thus, the current approach in seismic codes of accounting for the effects of accidental torsion due to the torsional ground motion, by shifting the center of mass, should be reevaluated.

영월 및 경주지진 파형의 주파수 분석(II) (Characteristics of Spectrum using Observed Ground Motion from the Yongwol and the Kyoungju Earthquakes(II))

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.57-60
    • /
    • 1999
  • Amplification factor spectrum using the observed strong ground motions database in the Korean Peninsula has been obtained and compared with Standard Rpectrum which wa suggested by United States Nuclear Regulatory Committee. The observed ground motions from the Yongwol and the Kyoungju Earthquakes respectively which are supposed to represent domestic seismotectonic characteristics such as seismic source attenuation of the propagation meium and site specific effect are used for the analysis of amplification factor spectrum,. The database are slightly different from the those of the second study. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds those of Standard Response Spectrum The results suggest that the characteristics of seismic strong ground motion which are supposed to represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

인체운동학에 기반한 이족로봇의 인간형 걸음새 설계 (Kinesiology Based Human-like Walking Pattern Design for a Bipedal Robot)

  • 박진희;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.659-667
    • /
    • 2011
  • The study of bipedal robot is towards similar shape and function with human. In this paper, we propose a human-like walking pattern compatible to the flexible foot with toe and heel structure. The new walking pattern for a bipedal robot consists of ZMP, center of mass (CoM), and ankle trajectory and is drawn by considering human kinesiology. First, the ZMP trajectory moves forward without stopping at a point even in the single support phase. The corresponding CoM trajectory to the ZMP one is derived by solving differential equations. As well, a CoM trajectory for the vertical axis is added by following the idea of human motion. The ankle trajectory closely mimics the rotational motion of human ankles during taking off and landing on the ground. The advantages of the proposed walking pattern are demonstrated by showing improved stability, decreased ankle torque, and the longer step length capability. Specifically, it is interesting to know that the vertical CoM motion is able to compensate for the initial transient response.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산 (Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity)

  • 최문관;박인규;구원철
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

Stochastic response of suspension bridges for various spatial variability models

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1001-1018
    • /
    • 2016
  • The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.