• Title/Summary/Keyword: Vertical mixing

Search Result 340, Processing Time 0.026 seconds

Characteristics of Stability and Intensity of Vertical Transfer in the Western Channel of the Korea Strait

  • Chung, Jong Yul
    • 한국해양학회지
    • /
    • v.10 no.2
    • /
    • pp.57-66
    • /
    • 1975
  • Structure of thermocline, characteristics of stability and intensity of vertical transfer have been studied with hourly oceanographic data in each layers on Line 207 from 1968 to 1969. It is found that a typical thermocline is formed at depths of 10 to 50 meters in summer and early autumn and its core is located near depths of 25 meters. The maximum diffusion coefficient of vertical turbulent is found to be 140$\textrm{cm}^2$/sec at the surface layer(i.e., 0-10 meters), while the minimum is 5$\textrm{cm}^2$/sec at depths of 25 meters, consistent with characteristics of stability and structure of thermocline layers. Our computed diffusion coefficient and stability indicate that the mixing hardly takes place below depths of 80 meters during summer and early autumn, but for the rest of the season mixing could move up to the depth of 50 meters. It appears that the Western Channel of the Korea Strait consist of three different water masses during summer and autumn, and for the rest of the season, two kinds are present.

  • PDF

Environmental Factors and Catch Fluctuation of Set-Net Grounds in the Coastal Waters of Yeosu (여수연안 정치망 어장의 환경요인과 어항 변동에 관한 연구)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu, oceanographic observations on the fishing grounds were carried out by the training ship of Yeosu Fisheries University from Jun. 1988 to Dec. 1990. The resultes obtained are summarized as follows; 1) The water mass in the fishing grounds were divided into the inner water (29.50-31.00$\textperthousand$), the mixed water (31.10-32.70$\textperthousand$) and the offshore water (32.70-34.30$\textperthousand$) according to the distribution of salinity from T-S diagram plotted all salinity data observed from Jun. 1988 to Dec. 1990. In spring the mixing water prevailed and in summer the inner and mixing water. But in autumn and winter the mixing and offshore waters prevailed. 2) The inner water which was formed by land water from the river of Somjin and the precipitation in the Yeosu district flowed southerly along the coast of Dolsando and spread south-easterly in the vicinity of Kumodo. The inner water and offshore water which supplied from the vicinity of Sorido and Yokchido formed the thermal front and halofront. 3) As the mixing water flowing from the western sea of Cheju to the southern coast of korea was low in temperature, the water mass of low temperature which appeared at the offshore bottom of Sorido in summer was considered not to be the Tsushima warm current. 4) As vertical mixing was made frequently in spring, autumn and winter, the differences in temperature and salinity between surface and bottom was respectively small. In summer, however, the mixing was not made because of the inner water expanded offshore through the space between surface and 10m layer and so a thermocline of $2.0^{\circ}C$/10m and halocline of 4.0$\textperthousand$/10m respectively in vertical gradient was formed. 5) In the vicinity of Dolsando and Kum a water low in salinity prevailed, but in the vicinity of Namhaedo and YoKchido the reverse took place. The inner and mixing waters formed at these arease was limited to the observation area not to spread widely.

  • PDF

Simulation of the Temperature and Salinity Along $36^{\circ}N$ in the Yellow Sea with a Wave-Current Coupled Model

  • Qiao, Fangli;Ma, Ji-An;Yang, Yong-Zeng;Yuan, Yeli
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Based on the MASNUM wave-current coupled model, the temperature and salinity structures along $36^{\circ}N$ in the Yellow Sea are simulated and compared with observations. Both the position and strength of the simulated thermocline are similar to data analysis. The wave-induced mixing is strongest in winter and plays a key role in the formation of the upper mixed layer in spring and summer. Numerical experiments suggest that in the coastal area, wave-induced mixing and tidal mixing control the vertical structure of temperature and salinity.

The Study on Changes of Mixing Layer Caused by Acoustic Excitation (음향 여기에 의한 혼합층 유동구조의 변화에 대한 연구)

  • 정양범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.120-127
    • /
    • 2000
  • This study is concerned with evaluating the effects of acoustic excitation on the development of two stream mixing layer generated by split plate. The ratios of two velocities U1 and U2 either side of the splitter plate were such that $U_1/U_2$=1.0 (uniform flow) or $U_1/U_2$<1.0(shear flow). The mixing layers were disturbed acoustically through the edge of split plate. Quantitative data were obtained with hot-wire anemometry. Flow visualization with smoke-wire was also employed for qualitative study. the results show that the large scale structures of mixing layers are strongly affected by excitation frequency and amplitude in both uniform and shear flows. The maximum streamwise and vertical turbulent intensities of the excited flow fields are apt to be decreased as compared with those of without excitation. The flow characteristics of uniform flow are more influenced by acoustic excitation than those of shear flow.

  • PDF

A Numerical Modelling of the tidal front in the Mid-yellow sea off Korea using a concept of Mixing rate (혼합율 개념을 이용한 서해 중부 조석전선의 수치모델)

  • 신상익;승영호
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.121-131
    • /
    • 1993
  • The tidal front forming in the Mid-Yellow Sea off Korea, near Tae-An peninsular, is calculated using a 3-D general circulation model(Semtner, 1974) and the concept of mixing rate, an extension of the concept of mixing efficiency proposed by simpson & Hunter(1974). Along the north and south open boundaries, simple radiation conditions are applied. The model is run with the initial state which represents the winter condition. With imposed uniform heating by solar radiation and spatially-different vertical mixing, the model then generated the tidal front comparable to the observed one.

  • PDF

Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels (개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형)

  • Jung, Youngjai;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.495-506
    • /
    • 2013
  • This study developed the Time-split Mixing Model (TMM) which can represent the pollutant mixing process on a three-dimensional open channel through constructing the conceptual model based on Taylor's assumption (1954) that the shear flow dispersion is the result of combination of shear advection and diffusion by turbulence. The developed model splits the 2-D mixing process into longitudinal mixing and transverse mixing, and it represents the 2-D advection-dispersion by the repetitive calculation of concentration separation by the vertical non-uniformity of flow velocity and then vertical mixing by turbulent diffusion sequentially. The simulation results indicated that the proposed model explains the effect of concentration overlapping by boundary walls, and the simulated concentration was in good agreement with the analytical solution of the 2-D advection-dispersion equation in Taylor period (Chatwin, 1970). The proposed model could explain the correlation between hydraulic factors and the dispersion coefficient to provide the physical insight about the dispersion behavior. The longitudinal dispersion coefficient calculated by the TMM varied with the mixing time unlike the constant value suggested by Elder (1959), whereas the transverse dispersion coefficient was similar with the coefficient evaluated by experiments of Sayre and Chang (1968), Fischer et al. (1979).

Numerical Study on Characteristics of Turbulence Scheme in Planetary Boundary Layer (난류 모수화 방법에 따른 대기경계층 수치모의 특성에 관한 연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • This paper investigates the characteristics of turbulence schemes. Turbulence closures are fundamental for modeling the atmospheric diffusion, transport and dispersion in the boundary layer. In particular, in non-homogeneous conditions, a proper description of turbulent transport in planetary boundary layer is fundamental aspect. This study is based on the Regional Atmospheric Modeling System (RAMS) and combines four different turbulence schemes to assess if the different schemes have a impact on simulation results of vertical profiles. Two of these schemes are Isotropc Deformation scheme (I.Def) and Anisotropic deformation scheme (A.Def) that are simple local scheme based on Smagorinsky scheme. The other two are Mellor-Yamada scheme (MY2.5) and Deardorff TKE scheme (D.TKE) that are more complex non-local schemes that include a prognostic equation for turbulence kinetic energy. The simulated potential temperature, wind speed and mixing ratio are compared against radiosonde observations from the study region. MY2.5 shows consistently reasonable vertical profile and closet to observation. D.TKE shows good results under relatively strong synoptic condition especially, mixing ratio simulation. Validation results show that all schemes consistently underestimated wind speed and mixing ratio but, potential temperature was somewhat overestimated.

The Mixing of Forced Plume In the Coastal Waters (연안해역 중력 분류의 혼합 과정)

  • Jang, Seon-Deok;Seo, Jeong-Mun;Lee, Jong-Seop
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.26-33
    • /
    • 1990
  • The behavior and mixing process of the forced plume are studied in the hydraulic laboratory. The dilution rate of discharged waste water from the port in various hydraulic condition was analized. The effect of densimetric Froude number and the discharge type on the dilution rate are discussed: In the vertical discharge, the forced plume of small densimetric Froude number mixes more actively than that of the large one. In the horizontal discharge, forced plume of large densimetric Froude number dilutes more rapidly than that of the small one. The mixing takes place more vigorously in the horizontal discharge than in the vertical one. The multi-port diffuser is more effective for the waste water discharge system than the single port diffuser in the tidal swinging coastal sea.

  • PDF

Development of the slitting device on separation study of pellet and hull (펠릿과 헐의 분리 연구를 위한 슬리팅 장치 개발)

  • 정재후;윤지섭;홍동희;김영환;진재현;박기용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.236-239
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed in order to feed UO$_2$pellet to the dry pulverizing/mixing device. In this study, we have compared and analyzed the handling method of the slitting and that of the pellet and hull, processing time, separating time for 20kgHM, the number of blades, on the existing slitting device using in DUPIC, and spent fuel management technology research and test facility. Also, we have compared and analyzed about an advantage and weak point, designing and producing, processing, establishment, operation, maintenance about the vertical and horizontal slitting device. Based on these results, we have developed the vertical slitting device. By using the results, we have enhanced the slitting processing time(over 40%)in comparison with DUPIC device, and it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF

A Numerical Study on Fuel Concentration Distribution in a FBC (유동층 연소로내 연료농도분포의 수치적 연구)

  • Lee, D.I;Park, S.H.;Shin, D.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.41-48
    • /
    • 1998
  • A numerical study on combustion in a fluidized bed is based on three dimensional mixing and dispersion phenomena in the bed owing to the bubble growth in the vertical direction. As fluidizing velocities increase, bubble diameters increase, which activates the fuel dispersion in the bed. The combustion rates, however, reduce due to the decrease of gas exchange rates between bubble and emulsion phases. Fuel distributions in the bed are dependent on fluidizing velocities, equivalence ratios, fuel particle diameters, fuel feeding points, and the number of fuel feeders.

  • PDF