• Title/Summary/Keyword: Vertical irregular

Search Result 187, Processing Time 0.023 seconds

A study on the effects of vertical mass irregularity on seismic performance of tunnel-form structural system

  • Mohsenian, Vahid;Nikkhoo, Ali
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.131-141
    • /
    • 2019
  • Irregular distribution of mass in elevation is regarded as a structural irregularity by which the modes with high energy levels are excited and in addition, it can lead the structure to withstanding concentration of nonlinear deformations and consequently, suffer from unpredictable local or global damages. Accordingly, with respect to the lack of knowledge and insight towards the performance of concrete buildings making use of tunnel-form structural system in seismic events, it is of utmost significance to assess seismic vulnerability of such structures involved in vertical mass irregularity. To resolve such a crucial drawback, this papers aims to seismically assess vulnerability of RC tunnel-form buildings considering effects of irregular mass distribution. The results indicate that modal responses are not affected by building's height and patterns of mass distribution in elevation. Moreover, there was no considerable effect observed on the performance levels under DBE and MCE hazard scenarios within different patterns of irregular mass distribution. In conclusion, it appears that necessarily of vertical regularity for tunnel-form buildings, is somehow drastic and conservative at least for the buildings and irregularity patterns studied herein.

Effects of Roughness and Vertical Wall Factors on Wave Overtopping in Rubble Mound Breakwaters in Busan Yacht Harbor

  • Dodaran, Asgar Ahadpour;Park, Sang Kil;Kim, Kook Hyun;Shahmirzadi, Mohammad Ebrahim Meshkati;Park, Hong Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.62-69
    • /
    • 2015
  • Coastlines are protected by breakwater structures against the erosion of sand or other materials along beaches due to wave action. This research examined the use of physical modeling to determine the effects of the tetrapod size and vertical walls of a rubble mound on the volume of wave overtopping under irregular wave conditions in coastal areas in Busan Yacht Harbor. In this analysis model, the structures were studied using irregular waves and the JONSWAP wave energy spectrum. To understand the effects of the tetrapod size and heights of the vertical wall, the study considered vertical walls of 0, 1.78, 6.83, and 9.33 cm with armor double layered material tetrapods of 8, 12, 16, and 20 tons. An extensive number of experiments covering a relatively large range of variables enabled a comprehensive discussion. First, in the presence of a short vertical wall, the water level played a key role in the overtopping discharge. In such circumstances, the values of the wave overtopping discharge decreased with increasing freeboard size. In the presence of a tall freeboard and middle, the value of the wave overtopping discharge was equally influenced by the vertical wall factor. Moreover, the tetrapod size decreased by an increase in the vertical wall factor, and relationship between them resulted in a short wall height. From an engineering point of view, considering a small water level may allow the choice of a shorter vertical wall, which would ultimately provide a more economical design.

Theoretical Study on the Dynamic Response of a Moored Buoy with Minimum Vertical Wave-exciting Force in Irregular Waves (수직운동(垂直運動)이 최소(最小)인 부표(浮標)의 불규칙파(不規則波)중 계류상태(繫留狀態)에 대한 동력학적(動力學的) 해석(解析))

  • H.S.,Choi;Hyo-Chul,Kim;Woo-Jae,Seong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 1984
  • A body form, which experiences minimum vertical wave-exciting forces in the vicinity of a prescribed wave frequency in water of finite depth, is obtained by an approximate method. Its configuration has the symmetry with respect to the vertical axis, expressed in terms of exponential functions. By distributing three-dimensional pulsating sources and dipoles on the immersed surface of the body, a velocity potential is determined and subsequently hydrodynamic forces including the 2nd-order time-mean drift forces are calculated. The dynamic behavior of the body moored in irregular waves is investigated numerically by using central difference method. Hereby irregular wave trains are simulated with examining its repeatability by comparing the resulting spectrum with original one. Numerical results indicated that the body form obtained from the present analysis possesses in general a favorable hydrodynamic characteristics in comparison with a spherical buoy and that the maximum excursion of the body can be significantly reduced by setting pre-tension of an appropriate amount in the mooring cable.

  • PDF

The Numerical Analysis of Pillar Stability with Multiple, Irregular Openings (다수의 불규칙 공동을 갖는 광주의 안정성에 관한 수치해석)

  • Min, Hyung-Ki;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.139-155
    • /
    • 2004
  • A room and pillar mining method has been adopting at the Jeungsun limestone mine. To check stability of pillar with multiple and irregular openings, the size, shape and spacing of rib pillar were first designed using some empirical suggestions. The Finite Difference Method(FDM)was used to analyze the pillar stability. Twelve different cases with the variation of K(horizontal/vertical stress)values, different height and different spacing of pillar were used in this study. Finally Mohr-Coulomb criterion was adopted to calculate the safety factors. Horizontal and vertical displacement, maximum and minimum principal stresses, range of plastic zone and safety factors were calculated at each case. As a result of analysis, the size of one block is 160m long, 70m wide, 40m high with 20m wide rib pillar and 20m square column pillar. The overall recovery at this case can be estimated about 40%.

  • PDF

Evaluation of Maximum Lateral Pressure on the 3D Printed Irregular-Shaped Formwork by Finite Element Analysis (3D 프린터로 제작된 비정형 거푸집의 최대 측압에 대한 유한요소해석)

  • Lee, Jeong-Ho;Ju, Young K.;Kim, Hak-Beom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • The F3D(Free-Form Formwork 3D Printer) technology that manufactures EPS(Expanded Polystyrene) formworks for irregular-shaped concrete structures by 3D printers was developed to reduce the cost and time. Because of weak strength and low elastic modulus of the EPS, structural performance including lateral pressure by fresh concrete of the formwork that consisted of EPS should be investigated. In order to calculate lateral pressures acting on formwork, several variables including sizes, shapes of formwork, tangential force(fricition) between fresh concrete and formwork, and material properties of fresh concrete should be considered. However, current regulations have not considered the properties of concrete, only focused on vertical formwork. Galleo introduced 3-dimensional finite element analysis models to calculate lateral pressure on formwork. Thus, proposed finite element analysis model based on previous studies were verified for vertical formwork and irregular-shaped formwork. The test results were compared with those by FEM analysis. As a result, the test agrees well with the analysis.

Dynamic response analysis of submerged floating tunnels by wave and seismic excitations

  • Lee, Jooyoung;Jin, Chungkuk;Kim, Moohyun
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2017
  • This paper presents the numerical simulation results for the dynamic responses of two types of submerged floating tunnels (SFT) under wave and/or seismic excitations. Time domain simulations are conducted by the commercial program OrcaFlex (OF) and in-house CHARM3D program (CP). The dynamic performances of a short/rigid/free-end SFT section with vertical and inclined mooring lines are evaluated. The SFT numerical models were validated against Oh et al.'s (2013) model test results under regular wave conditions. Then the numerical models were further applied to the cases of irregular waves or seismic motions. The main results presented are SFT surge/heave motions and mooring tensions. The general trends and magnitudes obtained by the two different software packages reasonably agree to each other along with experimental results. When seabed seismic motions are applied to the SFT system, the dynamic responses of SFTs are small but dynamic mooring tension can significantly be amplified. In particular, horizontal earthquakes greatly increase the dynamic tension of the inclined mooring system, while vertical earthquakes cause similar effect on vertical mooring system.

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

A novel approach for the definition and detection of structural irregularity in reinforced concrete buildings

  • S.P. Akshara;M. Abdul Akbar;T.M. Madhavan Pillai;Renil Sabhadiya;Rakesh Pasunuti
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.101-126
    • /
    • 2024
  • To avoid irregularities in buildings, design codes worldwide have introduced detailed guidelines for their check and rectification. However, the criteria used to define and identify each of the plan and vertical irregularities are specific and may vary between codes of different countries, thus making their implementation difficult. This short communication paper proposes a novel approach for quantifying different types of structural irregularities using a common parameter named as unified identification factor, which is exclusively defined for the columns based on their axial loads and tributary areas. The calculation of the identification factor is demonstrated through the analysis of rectangular and circular reinforced concrete models using ETABS v18.0.2, which are further modified to generate plan irregular (torsional irregularity, cut-out in floor slab and non-parallel lateral force system) and vertical irregular (mass irregularity, vertical geometric irregularity and floating columns) models. The identification factor is calculated for all the columns of a building and the range within which the value lies is identified. The results indicate that the range will be very wide for an irregular building when compared to that with a regular configuration, thus implying a strong correlation of the identification factor with the structural irregularity. Further, the identification factor is compared for different columns within a floor and between floors for each building model. The findings suggest that the value will be abnormally high or low for a column in the vicinity of an irregularity. The proposed factor could thus be used in the preliminary structural design phase, so as to eliminate the complications that might arise due to the geometry of the structure when subjected to lateral loads. The unified approach could also be incorporated in future revisions of codes, as a replacement for the numerous criteria currently used for classifying different types of irregularities.

Seismic response of active or semi active control for irregular buildings based on eigenvalues modification

  • Pnevmatikos, Nikos G.;Hatzigeorgiou, George D.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.647-664
    • /
    • 2014
  • A reduction of the response of irregular structures subjected to earthquake excitation by control devices equipped by suitable control algorithm is proposed in this paper. The control algorithm, which is used, is the pole placement one. A requirement of successful application of pole placement algorithm is a definition-selection of suitable poles (eigen-values) of controlled irregular structures. Based on these poles, the required action is calculated and applied to the irregular structure by means of control devices. The selection of poles of controlled irregular structure, is a critical issue for the success of the algorithm. The calculation of suitable poles of controlled irregular structure is proposed herein by the following procedure: a fictitious symmetrical structure is considered from the irregular structure, adding vertical elements, such as columns or shear walls, at any location where is necessary. Then, the eigen-values of symmetrical structure are calculated, and are forced to be the poles of irregular controlled structure. Based on these poles and additional damping, the new poles of the controlled irregular structure are calculated. By pole placement algorithm, the feedback matrix is obtained. Using this feedback matrix, control forces are calculated at any time during the earthquake, and are applied to the irregular structure by the control devices. This procedure results in making the controlled irregular structure to behave like a symmetrical one. This control strategy can be applied to one storey or to multi-storey irregular buildings. Furthermore, the numerical results were shown that with small amount of control force, a sufficient reduction of the response of irregular buildings is achieved.

RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD (TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어)

  • 김홍진;김형섭;안상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF