• Title/Summary/Keyword: Vertical ground reaction force

Search Result 163, Processing Time 0.022 seconds

Biomechanical Analysis of Muscle Fatigue and Ground Reaction Force for the Development of Outdoor Walking Shoes

  • Jang, Young-Min;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.413-420
    • /
    • 2016
  • Objective: The purpose of this study was to analyze and compare different kinds of outdoor walking shoes in terms of muscle fatigue and ground reaction force on walking, and to provide foundational data for developing and choosing outdoor walking shoes that fit the users. Method: The study subjects were 30 healthy men. The experiment was conducted by using outdoor walking shoes with different inner and outer harnesses of the midsole, and shapes of the outsole. For data collection, electromyography was used to measure the muscle fatigue of the anterior tibial muscle and gastrocnemii, which contribute to the dorsiflexion and plantarflexion of the ankle joint, and the biceps muscle of the thigh and lateral great muscles, which contribute to the flexion and extension of the knee joint. A GRF measurement device was used to measure the X, Y, and Z axes. Results: In the type A outdoor walking shoes, regarding the hardness of the midsole, the inner part was soft, while the outer part was hard. The vertical ground reaction force was the lowest, which means least impact while walking and light load to the knees and ankles. The type C outdoor walking shoes were intended to provide a good feel in wearing the shoes. The tibialis anterior, biceps femoris, and gastrocnemii indicate low fatigue, which means that during a long-distance walk, it will minimize the fatigue in the muscles of the lower limbs. Conclusion: To sum up the study results, the different types of outdoor walking shoes indicate their unique characteristics in the biomechanical comparison and analysis. However, the difference was not statistically significant. Thus, a systematic and constant follow-up research should be conducted to cope with expanding market for outdoor walking shoes. Lastly, this study is expected to present foundational data and directions for developing outdoor walking shoes.

Effects of Targeted Knee Flexion Angle on the Biomechanical Factors of Upward and Downward Phases during Forward Lunge

  • Lim, Young-Tae;Park, Jun Sung;Lee, Jae Woo;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: The aim of this study was to investigate the effect of targeted knee flexion angle on biomechanical factors of knee joint between upward and downward phases during the forward lunge. Method: Eight elderly subjects (age: $22.23{\pm}1.51years$, weight: $69{\pm}6.63kg$, height: $174.88{\pm}6.85cm$) participated in this study. All reflective marker data and ground reaction force during a forward lunge were collected. The knee joint movement and reaction force and joint moment at maximum knee flexion angle were compared by repeated measures one-way analysis of variance (ANOVA) (p<.05). The peak knee joint reaction force and joint moment between upward and downward phases were compared by repeated measures two-way ANOVA (p<.05). Results: The anterior and vertical knee joint movements, reaction force, and extensor moment of $80^{\circ}$ targeted knee flexion condition at maximum knee flexion angle was greater than both $90^{\circ}$ and $100^{\circ}$ conditions (p<.05). The $80^{\circ}$ knee flexed angle condition had greater peak joint reaction force and extensor moment compared with both $90^{\circ}$ and $100^{\circ}$ conditions between upward and downward phases during the forward lunge. Conclusion: As the targeted knee joint flexion angle increases, knee joint movement and kinetic variables become greater during the forward lunge exercise.

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

Effects of Foot Placement and Height of Bed Surface on Load of the Lumbar Spine During Transfer Activity (인체모형 옮기기 시 발의 배치와 옮기는 지면 높이가 허리척추에 미치는 영향)

  • Kim, Won-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.283-291
    • /
    • 2010
  • The purpose of this study was to investigate the effect of foot placement and height of bed surface on lumbar spine load in a dummy transfer activity. Fifteen healthy male students participated in this study. All subjects were involved in four different conditions according to foot placement (11 figure and $90^{\circ}$ figure) and height of bed surface (44 cm and 66 cm) randomly. Muscular activations of the biceps brachii, rectus femoris, elector spinae using surface-EMG, vertical ground reaction using force plate, and L4/L5 compression force using 3DSSPP (3D Static Strength Prediction Program) were measured and analysed. The results showed that muscular activations were not significantly different for the various conditions except for the rectus femoris on the right side (p<.05). Futhermore, the vertical ground reaction and L4/L5 compression force were significantly different conditions (p<.05). In conclusion, it is suggested that foot placement at $90^{\circ}$ figure is safer for transfer activity compared with the 11 figure.

Biomechanical Analysis of Throwing Movement between Skilled and Unskilled High School Students (남자 고등학생 숙련자.비숙련자의 던지기 동작에 대한 운동역학적 비교 분석)

  • Kough, Hyung-Jeek;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2009
  • This study was conducted to compare biomechanical differences in throwing movement between skilled and unskilled high school students using three-dimensional analysis system with a force platform. The findings indicated that skilled students showed shorter throwing time, faster horizontal speed of (1) the center of mass at heel contact of left foot, (2) the forearm throughout swing phase, (3) the hand after heel contact while unskilled students showed faster horizontal speed of, (1) the center of mass after heel contact and (2) the hand at heel contact of left foot. Skilled students showed greater (1) shoulder angle during throwing, (2) elbow angle after take off of foot, (3) peak vertical ground reaction force during throwing and (4) peak anterior-posterior ground reaction force at heel contact of right foot. While skilled students showed leaning backward of the trunk during throwing, unskilled students showed leaning forward during release phase with leaning backward before release.

Investigation of the Ground Reaction Force Parameters According to the Shoe's heel Heights and Landing Distance during Downward Stairs on Bus (버스계단 내리기 시 구두 힐 높이와 착지거리에 따른 지면반력 파라미터 조사)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • The purpose of this study was to investigate the GRF(ground reaction force) parameters according to the shoes's heel heights and ground landing distances during downward stairs on bus. Participants selected as subject were consisted of young and healthy women(n=9, mean age: $21.30{\pm}0.48$ yrs, mean height: $164.00{\pm}3.05cm$, mean body mass: $55.04{\pm}4.41kg$, mean BMI: $20.47{\pm}1.76kg/m^2$, mean foot length: $238.00{\pm}5.37mm$). They were divided into 2-types of shoe's heel heights(0 cm/bare foot, 9 cm) and also were divides into downward stairs with 3 types of landing distance(20 cm, 35 cm, 50 cm). A one force-plate was used to collect the GRF(AMTI, USA) data from the sampling rate of 1000 Hz. The GRF parameters analyzed were consisted of the medial-lateral GRF, anterior-posterior GRF, vertical GRF, loading rate, Center of Pressure(${\Delta}COPx$, ${\Delta}COPy$, COP area) and Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) during downward stairs on bus. Medial-lateral GRF and vertical GRF didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 9 cm shoes heel showed higher vertical GRF than that of 0 cm bare foot in landing distance of 50 cm. Also anterior-posterior GRF didn't show significant difference statistically according to the shoe's heel heights, but landing distance of 20 cm showed higher than that of landing distances of 35 cm and 50 cm in anterior-posterior GRF. Loading rate didn't show significant difference statistically according to the landing distance, but 9 cm shoe's heel showed higher than that of 0 cm bare foot during downward stairs. The ${\Delta}COPy$ and COP area didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 0 cm bare foot showed higher than that of 9 cm shoe's heel in ${\Delta}COPx$. Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) didn't show significant differences statistically according to the landing distance, but 9 cm shoe's heel showed decreased value than that of 0 cm bare foot in dynamics balance. Considering the above, parameters of GRF showed different characteristics according to the shoe's heel heights and ground landing distances during downward stairs on bus.

Analysis of the Vertical GRF Variables during Landing from Vertical Jump Blocking in Volleyball (배구 제자리 점프 블로킹 착지 시 숙련도에 따른 수직지면반력 변인 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • The purpose of this study was to investigate comparative analysis of the vertical ground reaction force variables during landing from vertical jump blocking in volleyball through GRF analysis system. The subjects participated in this study were 6 male university volleyball player and 6 male acted as a control group. The results are as follows: 1. The skilled group was longer than the unskilled group in flight time during vertical jump blocking. 2. The skilled group was faster than the unskilled group in tFz2 during landing from vertical jump blocking. 3. The skilled group was higher than the unskilled group in Fz2 during landing from vertical jump blocking. 4. The skilled group was higher than the unskilled group in Fz2LR during landing from vertical jump blocking. 5. The skilled group was higher than the unskilled group in impulse during landing from vertical jump blocking. Consequently, during landing from vertical jump, the landing strategy of the skilled group was found as a form of a stiff landing. Therefore, this landing strategy will be required to strengthen of hip and knee extensors and ankle plantar flexors for injury prevention.

The effects of strength training on the change of ground reaction force for the children with Down syndrome (근력 훈련이 다운증후군 아동의 지면반력의 변화에 미치는 영향)

  • Lim, Bee-Oh;Han, Dong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.1-16
    • /
    • 2002
  • The purposes of this study were to investigate the effects of strength training on the change of ground reaction force for the children with trisomy 21 Down syndrome. The subjects of this study were consisted of eight elementary school students with Down syndrome who participated in the strength training. The strength training was administered by six items such as squat, leg curl, leg extension, toe raise, sit-ups, and hyperextension. For strengthening muscle, each group also was treated by walking for 8 weeks, three times a week, 10-15RM, 3sets, which was based on the principle of progressive overload. For inquiring the effect of strength training, the ground reaction force variables were measured in two phases : before-training and 8 week-after training. The gait of each subject was acquisition using 2 AMTI force platforms set at 100 frequency. The results of this study were as follows: The pattern of vertical, antero-posterior and medio-lateral forces, trajectory of net COP and the timing ratio of reaching the each events were shown variously. So, it is not easy to explain these variables clearly. As the result of strength training, these variables were changed. However, the results of within subjects differ greatly, there was no difference statistically.

The Theta Analysis on the Components of Ground Reaction Force According to the Ground Conditions During Gait (보행 시 지면조건에 따른 지면반력 성분의 세타 분석)

  • Ryew, Che-Cheong;Hyun, Seung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the theta on the components of ground reaction force according to the ground conditions during gait. Method : Six healthy women(mean age: 22 yrs, mean height: $166.14{\pm}2.51cm$, mean body weights: $56.61{\pm}4.58kg$) participated in this study. The medial-lateral GRF(Fx 1), anterior-posterior GRF(Fy 1, Fy 2), vertical GRF(Fz 1, Fz 2, Fz 3), and impact loading rate were determined from time function and frequency domain. Also, GRF theta were time function and forces. Results : Fx 1, Fy 1 and Fy 2 of stair descending showed significant statistically higher forces than that of level walking, and ascending. Fz 1 of stairs descending showed significant statistically higher forces than that of level walking and stairs ascending(theta $88.62^{\circ}$). Also, Fz 2 of level walking showed significant statistically higher forces than that of stairs ascending and descending(theta $65.78^{\circ}$). Fz 3 of stairs ascending showed significant statistically higher forces than that of level walking and stairs descending($65.26^{\circ}$). Impact loading rate of stairs descending showed significant statistically higher forces than that of level and ascending walking. The GRF showed similar correlation with GRF theta(r=.603) according to the ground conditions during gait. Conclusion : These results suggest that the GRF theta can be used in conjunction with a gait characteristics, prediction of loading rate and dynamic stability.

The Kinetic and EMG Analysis about Supporting Leg of Uke in Judo (유도 허벅다리걸기 기술 발휘 시 지지발에 대한 근전도 및 운동역학적 분석)

  • Park, Jong-Yul;Kim, Tae-Wan;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • The purpose of this study is to analyze the muscle activations and Ground Reaction Force(GRF) in university judo players, and provide the guide of training in Judo. Using surface electrode electromyography(EMG), we evaluated muscle activity in 5 university judo players during the Judo Uke Movements. Surface electrodes were used to record the level of muscle activity in the Tibialis Anterior, Rectus Femoris, Elector Spinae, Gluteus Maximus, Gastrocnemius muscles during the Uke. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The Uke was divided into four phases : Kuzushi-1, Kuzushi-2, Tsukuri, Kake. The results can be summarized as follows: 1. The effective Uke Movements needs to short time in the Kake Phase 2. The Analysis of Electromyography of Uke Movements in Supporting Leg; TA(Tibialis anterior) had Higher %RVC in the Kuzushi Phase, RF(Rectus Femoris) had Higher %RVC in the Tsukuri Phase, GM(Gluteus Maximus) had Higher %RVC in the Kake Phase 3. The ground reaction force for Z(vertical) direction was showed increase tendency in Kuzushi phase, Tsukuri phase and decrease tendency in Kake phase.