• Title/Summary/Keyword: Vertical force

Search Result 1,459, Processing Time 0.031 seconds

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 2- Design of Mobile Vehicle) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 2- 이동체 설계))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.77-84
    • /
    • 2004
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline, and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application, as the attaching force of the vehicle can be affected by its posture.

Overview of Seismic Design for Vertical Construction Joints of Slurry Walls Used as Permanent Basement Walls (영구벽체로 사용하는 지하연속벽 수직시공이음부의 내진설계 개요)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.393-394
    • /
    • 2023
  • This paper provides an overview of seismic design considerations for vertical construction joints of a slurry walls used as a permanent basement walls.

  • PDF

A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle (4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구)

  • Park, Jae-Young;Shim, Woojin;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

A PHOTOELASTIC ANALYSIS OF STRESS DISTRIBUTIONS AROUND FIVE DIFFERENT TYPES OF ENDOSSEOUS IMPLANTS ACCORDING TO THEIR STRUCTURES (5종 골내 임플란트의 구조에 따른 주위의 응력분산에 관한 광탄성학적 연구)

  • Lee Jeong-Nam;Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.643-659
    • /
    • 1993
  • This study was performed for the purpose of evaluating the stress distributions around five different types of implants according to their structures. The stress distribution around the surrounding bone was analysed by two-dimensional photoelastic method. Five epoxy resin models were made, and vertical and lateral forces were applied to the models. A circular polariscope was used to record the isochromatic fringes. The results of this study were summerized as follows : 1. Threaded type implants showed more even stress distribution patterns than cylinderical type implants when vertical and lateral forces were applied. 2. The stress concentrated patterns were observed at the neck portion and middle portion of the cylindrical type implants comparing with threaded type implants when vertical force was applied. 3. Model 1 and model 4 which are tthreaded type implants showed similar stress distribution patterns at the middle and apical portions and more stress was concentrated at the neck porion of model 1 comparing with model 4 when vertical force was applied. The stresses around model 1 were more evenly distributed when lateral force was applied. 4. More stress was concentrated at the neck and middle portion of cylindrical type implants than threaded type implants when lateral force was applied. 5. Model 1 showed the most even stress distribution patterns when lateral force was applied and stress distribution did no occured at the apical portion of modedl 2 when lateral force was applied. 6. There were almost no differences in stress concentrated patterns with or without having hollow design. And the stress concentrated patterns were observed at the corner of apex in model 5 which has hollow design when vertical force was applied.

  • PDF

A Study on Application of Force-based Track Irregularity Analysis Method (하중기반의 궤도틀림 분석기법 적용에 관한 연구)

  • Hwang, Seon-Kwon;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, shape-based track management by analyzing track irregularity was studied in terms of force-based track irregularity analysis by numerical analysis of wheel-rail interaction force using by the measured vertical irregularity. The effect of the vertical irregularity of the track due to the difference in track types on the wheel-rail interaction force and the track acceleration in the connecting section of the sleeper floating track and the direct fixation track on concrete bed were analyzed. As the results of this study, the measured vertical irregularity was directly affect the vertical wheel load (the wheel-rail interaction force) and the rail acceleration, and it has been demonstrated to change consistently. In this study, the adequacy and necessity of the force-based track irregularity analysis method was verified based on the wheel-rail interaction analysis using the the measured vertical irregularity.

Analysis of Excitation Force and its Application in Vibratory Bowl Feeders (진동형 볼피더의 가진력 해석과 적용)

  • Oh, Seok-Gyu;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.70-77
    • /
    • 2020
  • Vibratory bowl feeders are widely utilized to align and feed the parts stacked inside the bowl of a feeder. The electro-magnetic force of the electromagnet in a bowl feeder generates the excitation force for the bowl to vibrate in both the horizontal and vertical directions to continuously feed the parts on the track. The feed rate of the part depends on the associated displacement in each direction during the vibration. Therefore, the excitation force induced by the electromagnet should be estimated in advance to ensure the suitable design of the bowl feeder. In this study, a theoretical solution was developed to calculate the electro-magnetic force of the electromagnet for a bowl feeder. Using the proposed solution, the electro-magnetic forces corresponding to a variation in the input parameters of the electromagnet, such as the voltage, frequency, and air gap, could be obtained. The force values obtained using the theoretical solution exhibited a satisfactory agreement with the results obtained using the finite element method, thereby demonstrating the validity of the approach. Subsequently, the bowl displacements were analyzed using the motion equation for the bowl feeder when the theoretically obtained excitation force were applied to vibrate the feeder. The correlation between the vertical displacements of the bowl and input parameters of the electromagnet could be obtained.

Estimation of critical speed and running performance for swing motion bogie of railway freight car (화물수송용 스윙모션보기의 임계속도와 주행성능 평가)

  • 함영삼;오택열
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2003
  • In this paper the dynamic characteristics of a Swing Motion Bogie, such as a critical speed and a carbody vibration, are investigated in reply to the request of the Meridian Rail Corporation in the United States. Also described are experimental results of the maximum speed, the derailment coefficient, the lateral force, the vertical force, the vibration acceleration and steady state lateral acceleration measured from main line tests.

Evaluation of critical speed & running performance for Swing Motion Bogie (스웡모션보기의 임계속도와 주행성능 평가)

  • 함영삼;허현무;오택열
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.892-897
    • /
    • 2002
  • The research was requested by Meridian Rail Corporation in United States. The Swing Motion Bogie can application by Korea style if synthesize study result of bogie strength evaluation, bogie dynamic characteristics analysis, actual test(maximum speed, derailment coefficient, lateral force, vertical force, vibration acceleration, steady state lateral acceleration) etc..

  • PDF

Change in Countermovement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics (반동을 이용한 수직 점프 시 높이 변화에 따른 운동역학 및 상변화 시점에서의 지면반력 벡터 변화)

  • Kim, Seyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2017
  • In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the countermovement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the countermovement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the countermovement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

Evaluation of Seismic Responses for Building in Moderate Seismicity Regions Considered Vertical Earthquake Ground Motions (지진지반운동의 수직성분을 고려한 증진지역 건축구조물의 지진응답평가)

  • Han, Duck-Jeon;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2009
  • Recent earthquake, such as the Northridge(1994), the Kobe(1995) and the Izmit(1990) earthquakes, gave serious damage in various buildings and bridges by the vertical seismic component. Most of the seismic designs neglect the vertical seismic component for usual frame structures. The purpose of this study is to evaluate the effects of the vertical seismic component and to compare the axial force of columns and plastic rotation angle of the analytical models in these effects. The vertical seismic component produced a large increment of axial force in columns. And the vertical seismic component caused a significant increase of the damage in the columns. As analysis result, increase of axial force cause the damage of columns and give possibility of story collapse mechanism of the structure system. Therefore, area that near fault ground motion is expected may be consider the effect of vertical component of seismic ground motions.

  • PDF