• Title/Summary/Keyword: Vertical excavation

Search Result 149, Processing Time 0.027 seconds

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

A study for calculating factor of safety against basal heave during circular vertical shaft excavation in clay considering 3D shape (3차원 형상을 고려한 점성토 지반 원형 수직구 굴착 중 히빙에 대한 안전율 산정을 위한 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun;Kim, Jung-Tae;Kim, Han-Sung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.717-729
    • /
    • 2018
  • Considering the stability of the ground in the process of excavation design is essential because there is a risk of basal heave due to the load of the surrounding ground during the vertical excavation. However, calculation of the factor of safety for basal heave should be performed with two-dimensional equation, and the equation cannot reflect three-dimensional shape of vertical excavation. In this study, an equation for factor of safety for the basal heave was proposed with considering the effect of three-dimensional shape. It is confirmed that the equation can more appropriately reflect the basal heave stability 3D circular vertical excavation than the existing equation. Using the equation proposed in this study, it is possible to derive an appropriate factor of safety according to the 3D excavation shape during the circular vertical shaft excavation.

Development of design method using Limit Equilibrium Method applying to vertical excavation reinforcing by soil-nailing (쏘일네일 보강 연직굴착면의 한계 평형법을 이용한 설계기법 개발)

  • Lee, Seom-Beom;Lee, In;Yun, Bae-Sik;Kim, Hong-Taek
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.47
    • /
    • pp.56-62
    • /
    • 2008
  • In order to apply the Limit Equilibrium Method generally used for the slope stability analysis to the vertical excavation walls reinforced by soil-nailing, in this study, the Limit Equilibrium Method for the temporary shoring facilities reinforced by soil-nailing was proposed, which is based on the stability for the horizontal displacement. In this study, the relation of the internal friction angles of the ground and the vertical excavation depths was arranged, which is satisfying the stability on the horizontal displacement by using the verification of the Limit Equilibrium Method. And then, the rational reinforcing length of soil-nailing was proposed for the critical areas. In addition, the modified safety ratio satisfying the stability on the horizontal displacement was proposed, when the Limit Equilibrium Method was applied to the vertical excavation walls reinforced by soil-nailing.

  • PDF

Expansion of Terzaghi Arching Formula to Consider an Arbitrarily Inclined Sliding Surface and Examination of its Effect

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.27-33
    • /
    • 2016
  • This study expanded Terzaghi arching formula, which assumed a vertical surface as a sliding surface, to consider an arbitrarily inclined surface as a sliding surface and examined the effect of a sliding surface. This study firstly developed a formula to expand the existing Terzaghi arching formula to consider an inclined surface as well as a vertical surface as a sliding surface under the downward movement of a trap door. Using the expanded formula, the effect of excavation, ground, and surcharge conditions on a vertical stress was examined and the results were compared with them from Terzaghi arching formula. The comparison indicated that the induced vertical stress was highly affected by the angle of an inclined sliding surface and the degree of influence depended on the excavation, ground, and surcharge conditions. It is expected that the results from this study would provide a better understanding of various arching phenomenon in the future.

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

Behavior Analyses of Ring Beam at Vertical Wall with Change of Excavation Depth (굴착심도 변화에 따른 원형수직구 Ring Beam의 거동분석)

  • Park, Jin-Eun;Kyung, Kab-Soo;Lee, Jun-Ho;Yoon, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.116-124
    • /
    • 2008
  • In order to evaluate the behavior patterns of the ring beam by excavation at the vertical wall with circular section, the measured field datum were analyzed and evaluated in this study. Additionally, stress patterns of the ring beam with the change of excavation depth were estimated by using FE analysis. As the results, it was shown that the tendency of the measured values for the behavior patterns of the ring beam is similar to the analyzed values in FE analysis. From the tendency, it was confirmed that the behaviors of the ring beam due to change of excavation depth can predict by FE analysis using the suggested method in this study.

The Analysis of Excavation Behavior Considering Small Strain Stiffness (미소변형율 강성을 고려한 지반굴착 해석)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper describes research on the prediction of the vertical displacement of surface, horizontal displacements and bending moments in two anchored retaining wall for an excavation by a finite element program. It is very important to consider the appropriate constitutive model for the numerical analysis in excavation behavior. It is shown in this paper that the analyses of excavation considering small strain stiffness gives the more reasonable prediction of the vertical displacement of surface. and the parametric study on the small strain stiffness parameters for excavation analysis has been analysed.

  • PDF

An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground (연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구)

  • Oh, Bum-Jin;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.215-231
    • /
    • 2011
  • In this study, the behavior of a shallow 2-arch tunnel during the excavation in the sandy ground containing vertical discontinuity plane was experimentally studied. Load transfer mechanism in the pillar caused by a 2-arch tunnel excavation was observed. The position of the vertical discontinuity plane was varied. Model tests were carried out in the normal construction sequence of 2-arch tunnel. Test results-showed that the load transfer caused by the 2-arch tunnel excavation was concentrated in the discontinuity plane, and was cut by the discontinuity plane, so no load transfer took place above the discontinuity plane. It was also shown that the effect of adjacent tunnel excavation on the pillar load and the ground deformation was greater when excavating the upper half-face of the main tunnel, more than when excavating the lower half-face.

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

The first application of vertical snake in 345kV XLPE $2,500mm^2$ (345kV XLPE $2,500mm^2$ 수직스네이크 최초적용)

  • Oh, Chang-Hyo;Yoon, Hyung-Hee;Lee, Koan-Seong;Paik, Nam-Yeol;Kim, Soo-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.568-569
    • /
    • 2011
  • As an answer for need for minimizing the road excavation of a box type tunnel, a method of vertical snake was developed, which is very economical and easy to construct. The reason why it is good is, the road excavation width, steel accessories, the road occupation space decreases with the technology. The pros and cons of 345kV XLPE $2,500mm^2$ horizontal and vertical snake are listed below. In this study, topics such as 345kV XLPE $2,500mm^2$ vertical snake construction standard and the development process of steel accessories, vertical snake construction procedure will be covered.

  • PDF