• Title/Summary/Keyword: Vertical change

검색결과 1,406건 처리시간 0.036초

Cone Beam Computed Tomography의 두부계측분석을 통한 골격성 제3급 부정교합 환자에서 악교정 수술 후 입술과 주위 연조직의 수직적 변화 (The Vertical Changes of Lip and Perioral Soft Tissue Following Orthognathic Surgery in Skeletal Class III Patients by a Cephalometric Analysis of Cone Beam Computed Tomography)

  • 이종민;강주완;이종호;김창현;박재억
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제34권5호
    • /
    • pp.311-319
    • /
    • 2012
  • Purpose: The aim of this study is to evaluate the vertical changes of the lip and perioral soft tissue, following orthognathic surgery in skeletal class III patients by a cephalometric analysis of a cone beam computed tomography (CBCT). Methods: A total of 20 skeletal class III patients, who had bimaxillary surgery with Le Fort 1 osteotomy and bilateral sagittal split ramus osteotomy, were included in this study. The surgical plan for maxilla was posterosuperior impaction with the anterior nasal spine, as the rotation center. Further, the surgical plan for mandible was also posterosuperior movement. The soft tissue changes between lateral cephalogram and CBCT were compared. And the correlations between independent variables and dependent variables were evaluated. Results: There were no significant differences of the soft tissues changes between lateral cephalogram and CBCT. Upper lip philtrum length (SnLs), nasolabial angle increased and upper lip vermilion length (LsStms), lower lip length (StmiB'), lower lip vermilion length (StmiLi), lower lip philtrum length (LiB') and soft tissue lower facial height (SnMe') decreased after surgery. Change of SnLs (${\Delta}$SnLs) was influenced by vertical change of menton (${\Delta}$MeV), and change of LsStms (${\Delta}$LsStms) was influenced by upper lip thickness (ULT). Change of StmiLi' (${\Delta}$StmiLi') were influenced by preoperative overjet. Change of StmiB' (${\Delta}$StmiB') were influenced by preoperative overjet, vertical change of lower incisor (${\Delta}$L1V) and horizontal change of posterior nasal spine (${\Delta}$PNSH). Change of LiB' (${\Delta}$LiB') was influenced by ${\Delta}$L1V and ${\Delta}$PNSH. Change of SnMe' (${\Delta}$SnMe') was influenced by ${\Delta}$MeV, horizontal change of upper incisor (${\Delta}$U1H) and horizontal change of lower incisor (${\Delta}$L1H). ${\Delta}$Nasolabial angle was influenced by change of ULT (${\Delta}$ULT). Conclusion: Both soft tissues and hard tissues can be evaluated by CBCT. Posterosuperior rotation of maxillomandibular complex resulted in increase of upper lip philtrum length and nasolabial angle, while the upper lip vermilion length, lower lip philtrum length, lower lip vermilion length, and soft tissue lower facial height showed a decrease.

암반특성의 수직변화가 암반분류에 미치는 영향에 관한 수치해석적 연구 (Effect of Vertical Change of the Rock Mass Characteristics on Rock Mass Classification by Numerical Analysis)

  • 권순섭;이종선;우성원;이준우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.476-479
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the vertical direction. However, such case is seldom encountered in practice and not applicable when the properties vary along the vertical direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the vertical direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$(vertical direction) on the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

차량성능을 고려한 최대종단경사 합리화 연구 (Theoretical Review of Highway Grades Considering Vehicle Performances)

  • 김상엽;이승용;한형관;최재성
    • 대한교통학회지
    • /
    • 제25권5호
    • /
    • pp.79-90
    • /
    • 2007
  • 도로의 최대종단경사는 차량의 등판능력에 좌우된다. 과거에 비해 차량의 성능이 좋아질수록 도로의 최대종단경사는 조정될 수 있다. 하지만, 미국(AASHTO, 1990, 2004)에서는 설계기준트럭이 300lb/hp에서 200lb/hp로 성능이 상승했음에도 불구하고, 적용되는 최대 종단경사는 거의 변화가 없다. 따라서, 현재 차량의 성능을 고려한 최대종단경사의 검토 및 조정의 검토가 필요한 실정이다. 특히 국내의 지형은 산악지가 많고, 험준한 지역이 많으므로 실정에 맞도록 최대종단경사의 검토가 필요하다. 본 연구에서는 차량의 성능의 개선과 도로 설계자가 당면한 결정의 문제를 인식하고 세계 각국의 지형과 최대종단경사 적용기준을 비교하여 우리나라의 최대종단경사의 적정성을 확인한다. 또한, 교통시뮬레이션 프로그램을 이용하여 차량의 성능향상에 따른 새로운 트럭 성능곡선을 토대로 최대종단경사를 판단한 결과 $1{\sim}2%$ 정도 종단경사 완화가 가능한 것으로 판단한다.

수직사위 교정 전·후 시기능 변화에 대한 연구 (Research on Visual Function Before and After Prescription of Vertical Prism)

  • 김소라;이기영;박현주
    • 한국안광학회지
    • /
    • 제20권2호
    • /
    • pp.229-235
    • /
    • 2015
  • 목적: 본 연구에서는 수직사위 처방 후 시간이 경과 후 사위 변화와 각 변수값의 상관관계와 변화를 보고자 하였다. 방법: 수직프리즘을 처방받은 10~30대 80명을 대상으로 프리즘 처방 시와 1년 후 재방문 시 근거리 수직사위 및 처방에 필요한 예비검사와 양안시검사를 실시하였다. 결과: 사위(p=0.000), 상방개산력(p=0.000), 폭주근점(p=0.003) 조절근점(우안)(p=.005) 조절근점(좌안)(p=0.000]은 유의한 변화를 보였다. 결론: 수직사위에 대한 수직프리즘 처방량은 재방문 시 감소하였고, 사위, 상방개산력, 폭주근점, 조절근점(우안), 조절근점(좌안)은 프리즘 처방 전과 재방문 시 유의한 변화를 보였다. 양안조절래그는 수직프리즘 처방량과 양안시검사값 등과 큰 연관성이 없었다.

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

상지동작에 따른 길의 변화에 관한 연구(제2보) - 사선방향의 변화를 중심으로 - (A Study on the Change of Waist Pattern by Upper Limb Motion (Part 2) - By the Change of Oblique Line -)

  • 이은정
    • 한국의류산업학회지
    • /
    • 제4권2호
    • /
    • pp.145-155
    • /
    • 2002
  • In order to investigate how upper limb motion gives influence on clothing, this study measured tests by following standards: Front Vertical motion, Side-Vertical motion, and Horizontal motion. For this study, the procedures in the order of alphabet are applied. A. Eeach of testee's pattern was copied by the motion with a method of tight fitting technique. B. Analyzing each of the size-change on measuring item. C. Studying the moving aspects at each datum points. The results shows that the biggest change can be found in the following items. 1) In vertical motion of F4 (the length to shoulder point from A-point) 2) In horizontal motion of F5 (the length to front-width point from A-point), the check-result gained by checking the notice between motions shows that the most noticeable items are F4 (the length to shoulder point from A-point), F5 (the length to front-width point from A-point), F6 (the length to armpit point from A-point), B7 (the length to side-waist point from B-point). In result of the study of datum point's movement by motion, the items which were measured with the longest on straight-distance in vertical motion are the front and rear-shoulder, and the rear-shoulder, front-armpit in horizontal motion each. In the movement of each datum points by length, the check-result gained by checking the notice between motions shows that the most remarkable item is the front-shoulder.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현 (Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method)

  • 정인오;이윤한;황인성;김승조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

2자유도 Contact Slider 모델의 동특성 해석 (Analysis of Dynamic characteristic of 2-DOF Contact Slider)

  • Park, Kyoung-Su;Chun, Jeong-Il;Park, Young-Pil
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.924-929
    • /
    • 2001
  • The flying height of contact slider is determined by vertical and pitching motions of slider. This paper performed the computer simulation for flying height change of contact slider. It is changed by many parameters, contact stiffness, contact damping, air bearing stiffness ratio, a location of mass center, and so on. Computer simulation is performed for knowing for what change of these parameters influences in flying height of contact slider. Disk surface is modeled in harmonic wave with from 10㎑ to 600㎑. Tri-pad slider is modeled in that contact slider has 2-DOF motion (vertical motion, pitching motion). Tri-pad contact slider is analyzed by numerical analysis method in computer simulation.

  • PDF

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.