• Title/Summary/Keyword: Vertical axis

Search Result 799, Processing Time 0.032 seconds

Evaluation of Structural Performance of RC T-shaped Walls with Different ratios of axial load and vertical reinforcement (압축력비와 수직철근비에 따른 RC T형 벽체의 구조성능 평가에 관한 해석적 연구)

  • 하상수;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.403-408
    • /
    • 2003
  • The objective of this study is to understand the variables affected the confinement for the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The structural performance of T-shaped walls was advanced by the transverse reinforcement which restrained the concrete subjected to compressive stress. If the arrangement of transverse reinforcement was not suitable for the confinement, T-shaped walls happened the brittle failure by web crushing or bucking of vertical reinforcement at the compression zone. It is necessary to confine transverse reinforcement in order to prevent the these failure. But the location of neutral axis and the magnitude of ultimate strain vary according to the section shape, a ratio of axial load, a ratio of wall cross sectional area to the floor-plan area, an aspect ratio and the reinforcement ratio. Therefore, the objective of this research is to grasp the location of neutral axis and the range which needs for the confinement of transverse reinforcement through the results of the sectional analysis which varies the ratio of axial load and the ratio of vertical reinforcement.

  • PDF

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

A study on heat transfer during solidification of phase change material on a finned vertical cooling tube (휜붙이 수직냉각관 주위의 상변화물질에서 응고열전달에 관한 연구)

  • 정석주;송하진
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.33-41
    • /
    • 1996
  • Experiments were performed to study solidification of phase change material on a finned vertical tube when either conduction In the solid or natural convection in a liquid controls the heat transfer. The liquid was housed in a cylindrical containment vessel whose surface was maintained at a uniform, time-invariment temperature during a data run, and the solidification occurred at a finned and unfinned vertical tube positioned along the axis of the vassel. The phase change material(PCM) employed in this experiment is 99 percent pure n-Octacosan paraffin($C -{28}H_{58}/$). For conduction-controlled and convection-controlled solidification, the enhancement of the solidified mass rate due to finning is great when the solidified layer is thin and decreases as the layer grows thicker. It is studied that the latent energy($E_{\lambda}$) is the largest contributor to the total extracted energy($E_{\lambda} + E_{sl}+E_{s2}$) and the total extracted energy rate at a finned vertical tube is greater than that at a unfinned vertical tube.

  • PDF

An Experimental Evaluation for an abnormal vibration on running of the Domestic LRT (Light Rail Transit) (국내 경전철 주행중 이상진동에 대한 시험적 평가)

  • Yang, Hee-Joo;Woo, Kwan-Je;Lee, Kang-Wun;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1321-1326
    • /
    • 2011
  • THE RAILWAY VEHICLE IS CONSISTS OF CARBODY, BOGIE AND WHEELSETS, EACH OF COMPONENTS IS CONNECTED WITH RIGID MASS, SPRING AND DAMPER. EACH OF COMPONENTS HAS TRANSLATION MOTIONS OF LONGITUDINAL (X AXIS), LATERAL (Y AXIS) AND VERTICAL (Z AXIS) DIRECTIONS, ROTATION MOTIONS OF X, Y, Z AXIS WHICH ARE NAMED ROLLING, PITCHING AND YAWING. THE VIBRATION MODE OF RAILWAY VEHICLE IS DIFFICULT TO FIND THE CHARACTERISTICS OF MOTION DURING THE OPERATION ON THE TRACK BECAUSE THESE HAPPEN TO INDEPENDENCE OR DUPLICATION MOTION CAUSED BY VEHICLE, WHEEL/RAIL AND TRACK IRREGULARITY ETC. IT IS NAMED AN ABNORMAL VIBRATION THAT THE VIBRATION, WHICH WAS PASSED THE PRIMARY AND SECONDARY SUSPENSION, IS AFFECTED TO THE PASSENGER WITHOUT DAMPING. THIS PAPER DESCRIBES AN EXPERIENCE EVALUATION TO FIND THE CAUSE OF AN ABNORMAL VIBRATION WHICH WAS HAPPEN AT OPERATING SPEED 60KPH ZONE DURING THE MAINLINE TEST.

  • PDF

A Study on Kinematic Design of Multi-axis Simulator Linkage (다축 제어 시뮬레이터 링크부의 기구학적 설계)

  • 정상화;박용래;류신호;김현욱;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.711-714
    • /
    • 2001
  • As the life cycle of the vehicle become shorter, the method that reduce the development time of new model become more important. In this reason, the development of the simulator that provides similar environment with the actual vehicle road characteristics is increasing. In this paper, the multi-axis simulator is designed and analyzed by kinematic method. The simulator has a function simulating the 3 load elements; vertical, longitudinal, and lateral force respectively and simultaneously. The result of this paper can be used for developing the multi-axis simulator linkage.

  • PDF

A Study for behavior mode frequency of railway vehicle using ramp device (Ramp장치를 이용한 철도차량 거동모드 주파수에 관한 연구)

  • Yang, Hee-Joo;Woo, Kwan-Je;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.30-35
    • /
    • 2010
  • The railway vehicle is a multi-body system running on the track which consists of carbody, bogie and wheelset, each of components is connected with rigid mass, spring and damper. each of components has translation motions of longitudinal (X axis), lateral(Y axis) and vertical(Z axis) direction, and rotation motions of X, Y, Z axis which are named Rolling, Pitching and Yawing. The vibration mode of railway vehicle is difficult to find the characteristics of motion during the operation on the track because these happen to independence or duplication motion caused by vehicle, wheel/rail and track irregularity etc. This paper presents the result of ramp test to show the bounce, roll, pitch and yaw mode frequency of the railway vehicle.

  • PDF

Origin of the anomalously large upward acceleration associated with the 2008 Iwate-Miyagi Nairiku earthquake

  • Takabatake, Hideo;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.675-694
    • /
    • 2012
  • The 2008 Iwate-Miyagi Nairiku earthquake ($M_w$ 6.9, $M_{jma}$ 7.2) occurred on 14 June 2008 in Japan. The amplification and asymmetric waveform of the vertical acceleration at the ground surface recorded by accelerometers at station IWTH25, situated 3 km from the source, were remarkable in two ways. First, the vertical acceleration was extremely large (PGA = 38.66 $m/s^2$ for the vertical component, PGA = 42.78 $m/s^2$ for the sum of the three components). Second, an unusual asymmetric waveform, which is too far above the zero acceleration axis, as well as large upward spikes were observed. Using a multidegree-of-freedom (MDF) system consisting of a one-dimensional continuum subjected to vertical acceleration recorded at a depth of 260 m below ground level, the present paper clarifies numerically that these singular phenomena in the surface vertical acceleration records occurred as a result of the jumping and collision of a layer in vertical motion. We herein propose a new mechanism for such jumping and collision of ground layers. The unexpected extensive landslides that occurred in the area around the epicenter are believed to have been produced by such jumping under the influence of vertical acceleration.

Design of Hybrid Superconductor Bearing Set for a Flywheel System with Vertical Axis (수직축형 플라이휠 시스템을 위한 초전도 하이브리드 베어링의 설계)

  • 이준성;한영희;한상철;성태현;김상준
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • A vortical axis flywheel system was conceptualized, which uses a hybrid superconductor bearing set to carry the wheel part load. The multiple designs of magnetic bearing and superconductor bearing were analyzed by using conventional numerical magnetostatic analysis method The best medels were selected among four different types of Permanent magnet bearings for upper bearing and two types of superconductor bearing for lower bearing, respectively These results were discussed in regard of application to the flywheel system with a Passive hybrid magnetic bearing set.

  • PDF

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (I))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2013
  • In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.