• Title/Summary/Keyword: Vertical Wind Tunnel

Search Result 130, Processing Time 0.028 seconds

Study on the size reduction factor of extreme wind pressure of facade cladding of high-rise buildings with square section

  • Xiang Wang;Yong Quan;Zhengwei Zhang;Ming Gu
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.41-60
    • /
    • 2023
  • The effect of cladding panel size on the size reduction factor (SRF) of extreme area-averaging wind pressure (EAWP) on the facades of a high-rise building is often ignored in previous studies. Based on wind tunnel tests, this study investigated the horizontal and vertical correlations of wind pressure on the facade claddings of square-section high-rise buildings. Then, the influencing parameters on the SRF of the EAWP on the cladding panels were analyzed, which were the panel area, panel width, panel length and building width. The results show clear regional distinctions in the correlation of wind pressures on the building facades and the rules of the horizontal and vertical correlations are remarkably different, which causes the cladding size ratio to impact the SRF significantly. Therefore, this study suggests the use of the non-dimensional comprehensive size parameter b𝜶h1-𝜶/B (𝜶 is the fitting parameter) determined by the cladding panel horizontal size b, cladding panel vertical size h and the building width B rather than the cladding panel area to describe the variation of the EAWP. Finally, some empirical formula for the SRF of the EAWP on the cladding of a high-rise building is proposed with the nondimensional comprehensive size parameter.

Numerical and wind tunnel simulation of pollutant dispersion in the near wake of buildings

  • Wang, X.;McNamara, K.F.
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.427-442
    • /
    • 2005
  • Numerical and wind tunnel simulations of pollutant dispersion around rectangular obstacles with five aspect ratios have been conducted in order to identify the effects of flow patterns induced by buildings on plume dispersion in the near wake of buildings. An emission from a low source located upwind of obstacles was used in this simulation. The local flow patterns and concentrations around a cubical obstacle were initially investigated using three RANS turbulence models, (the standard $k-{\varepsilon}$, Shear Stress Transport (SST), Reynolds-Stress RSM turbulence model) and also using Large-eddy simulation (LES). The computed concentrations were compared with those measured in the wind tunnel. Among the three turbulence models, the SST model offered the best performance and thus was used in further investigations. The results show, for normal aspect ratios of width to height, that concentrations in the near wake are appreciably affected because of plume capture by the horseshoe vortex and convection by the vertical vortex pairs. These effects are less important for high aspect ratios. Vertical vortex pairs present a strong ability to exchange mass vertically and acts efficiently to reduce ground-level concentrations in the near wake.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

An Experimental Study for the Performance Analysis of a Vertical-type Wind Power Generation System with a Cross-flow Wind Turbine (횡류형 터빈을 적용한 수직축 풍력발전시스템의 성능평가를 위한 실험 연구)

  • Cho, Hyun-Sung;Chung, Kwang-Seop;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1272-1278
    • /
    • 2014
  • In this experimental study for the current growing offshore wind, a wind tunnel test was conducted to examine the performance of the vertical-type cross-flow wind turbine power generation system. Due to the limited size of the test section of the wind tunnel, the inlet guide vane of the original wind power generation was scaled down to about 1/5 and the turbine impeller diameter was also reduced to 1/2 of the prototype impeller. The number of the impeller blade is another important parameter to the output power of the wind power generation system and the number was varied 8 and 16. From the analysis of the experimental result, the output brake power of the model wind turbine was measured as 278watts with the 16-blade at 12 m/s of the rated wind speed and the rated brake power of the prototype wind turbine is calculated to 3.9kW at the rated operating condition.

Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests

  • Hua, X.G.;Chen, Z.Q.;Chen, W.;Niu, H.W.;Huang, Z.W.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.349-361
    • /
    • 2015
  • Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel box-girder suspension bridges where different vertical modes are selectively excited in turn with wind velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional vertical amplitudes are determined as a function of reduced velocity U/fD. Two 'lock-in' ranges are observed at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second 'lock-in' range, which is induced by the conventional vortex shedding, consistently gives larger responses than the first one and the Sc-normalized maximum non-dimensional responses are almost the same for different spring constants. The first 'lock-in' range where the vibration frequency is approximately two times the vortex shedding frequency is probably a result of super-harmonic resonance or the "frequency demultiplication". The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these modes is identical.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

A Wind Tunnel Study on Influences of ILS Tower on Wind Speed Measurement (계기착륙장치 타워가 풍속관측에 미치는 영향에 관한 풍동실험연구)

  • Choi, Cheol-Min;Kim, Kye-Hwan;Kim, Young-Chul;Kwon, Kybeom
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • In this study, it is first intended to simulate the vertical profile of atmospheric flow in a short wind tunnel. In order to accomplish it, proper devices are designed properly to reduce freestream flow momentum and it is confirmed from the measured velocity profile using hot-wire anemometer that momentum flux of the tunnel free stream can be reduced and desired atmospheric boundary can be created. Second, experiments are performed to identify influences of a surrounding structure measuring correct wind velocity by an anemometer, which are located nearby due to area limitation in actual airport and correction factors are proposed from experimental results. One of findings is that in order to limit the velocity attenuation due to a nearby structure under 10%, wind velocity measuring equipment should be installed at least 6 times of the structure height away from the structure of concern.

An active grid for the simulation of atmospheric boundary layers in a wind tunnel

  • Talamelli, A.;Riparbelli, L.;Westin, J.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 2004
  • A technique for the simulation of atmospheric boundary layers in wind tunnels is developed and tested experimentally. The device consists of a grid made of seven horizontal and vertical evenly distributed bars in which air injection holes are drilled in order to influence the flow in the wind tunnel. The air flow in each bar can be controlled independently. Firstly, the device is used together with a rough carpet, which covers the test section floor, in order to simulate the boundary-layer characteristics over an open rural area. Hot-wire measurements, performed at different positions in the test-section, show the capability of the grid in generating the required boundary layer. An acceptable agreement with statistical values of mean velocity and turbulence profiles has been achieved, together with a good span-wise homogeneity. The results are also compared with those of a passive simulation technique based on the use of spires.