• 제목/요약/키워드: Vertical Upwards Cutter Orientation

검색결과 3건 처리시간 0.018초

High Speed Ball End Milling for Difficult-to-Cut Materials

  • Lee, Deug-Woo
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.19-27
    • /
    • 2000
  • High speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the die/mold or aerospace industries for the machining of complex 3D surfaces. HSM of difficult-to-cut materials such as die/mold steels, titanium alloys or nickel based superalloys generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. Following a brief introduction on HSM and reated aerospace or die/mold work, the paper reviews published data on the effect of cutter/workpiece orientation and cutting environments on tool performance. First, experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness. Cutting was performed using 8 mm diameter PVD coated solid carbide cutters with the workpiece mounted at an angle of 45 degree from the cutter axis. A horizontal downwards cutting orientation proveded the best tool life with cut lengths ∼50% longer than for all other directions (horizontal upwards, vertical downwards, vertical upwards). Second, the cutting environments were investigated for dry, flood coolant, and compressed chilly air coolant cutting. The experiments were performed for various hardened materials and various coated tools. The results show that the cutting environment using compressed cilly air coolant provided better tool life than the flood coolant or the dry.

  • PDF

니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향 (Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys)

  • 이득우
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.

볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가 (Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments-)

  • 이채문;김석원;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF