• Title/Summary/Keyword: Vertical Structures

Search Result 1,539, Processing Time 0.033 seconds

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Seismic Performance of High-rise Moment-resisting RC Frame Structures with Vertical Setback

  • Jiang, Huanjun;Huang, Youlu;Li, Wannian
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.307-314
    • /
    • 2020
  • High-rise buildings with vertical setback are widely used in practice. From the field investigation of the past earthquakes, it was found that such kind of vertically irregular high-rise building structures easily suffer severe damage during strong earthquakes. This paper presents an extensive study on the earthquake responses of moment-resisting frame structures (MFS) popularly applied in high-rise buildings with vertical setback. Four groups of MFS are designed, including three groups of structures with vertical setback and one group of structures with the lateral stiffness varying along the building height but without vertical setback. The numerical models of the structures are established, and the time history analysis of the structures under different levels of earthquakes is conducted. The earthquake responses of the structures are compared. The influence of the ratio between the horizontal setback dimension and the previous plan dimension, the eccentricity of setback, and the position where the setback occurs on the seismic performance of structures is studied. The rationality of the provisions for the structures with vertical setback specified in the current design codes is checked by the findings from this study.

The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures (고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.

Vertical Distribution of Seismic Load for Earthquake Resistnat Design of base Isolated Building Structures (면진건축물의 내진설계를 위한 지진하중 분배식 제안)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.212-219
    • /
    • 1999
  • In this paper we investigated an applicability of earthquake regulations for seismic-isolated building structures which has been used currently and propose an efficient method for vertical distribution of seismic loads. The distribution of force is revised in UBC-94 as vertical distribution of force of UBC(Uniform Building Code)-91 is not sufficient safety but its distribution is inefficient expensive because of similar expression to fixed-based structures. In order to overcome this difficulties improved vertical distribution to fixed-based structures. In order to overcome this difficulties improved vertical distribution of seismic load is proposed using two degrees-of-freedom isolated structures and mode shape of fixed-based structures. Efficiency and accuracy of the proposed method are verified through analysis of an example structures with moment resisting frame and shear walls so this study approximate to dynamic analysis results in each case.

  • PDF

Characteristics of Vertical Vibration Transfer in Vertical Way according to Shear Wall Apartment Structures due to Heel-drop Impact (발 뒤꿈치 충격에 의한 전단벽식 공동주택 수직진동의 수직방향 진동전달 특성)

  • Chun, Ho-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.70-73
    • /
    • 2006
  • Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the characteristics of vertical vibration transfer in terms of the directions of transfer(upward transfer and downward transfer) on the shear wall building structures due to heel-drop impact forces. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on two shear wall building structures. The results of this study suggest that the characteristics of vertical vibration transfer are similar in terms of the directions of transfer.

  • PDF

An Experimental Study on the Vertical Vibration Transfer according to Rahmen Building Structures due to Train Loads (라멘조 건축구조물의 수직진동 전달특성에 관한 실험연구)

  • 전호민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.469-475
    • /
    • 2004
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the dynamic characteristics of vertical vibration transfer from lower stories to upper ones on the Rahmen building structures due to traffic loads. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structures. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the type of trains.

  • PDF

Measurements on the Characteristics of Dynamic and Vertical Vibration Transfer according to floors of Building Structures using Accelerometer and Dynamic signal analyzer (가속도계와 동적신호분석기를 이용한 건축물 바닥슬래브 동특성 및 수직진동 전달특성 측정)

  • Chun Ho-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.29-34
    • /
    • 2006
  • In general, the vertical vibration problems for .strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures. In order to examine the characteristics of vertical vibration, the modal test and the impact (heel-drop and hammer) excitation experiments were conducted several times on three building structures. The results from the experiments are analyzed and compared. with the results. The results of this study suggest that the characteristics of vertical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces.

  • PDF

The effect of the vertical excitation on horizontal response of structures

  • Ghaffarzadeh, Hosein;Nazeri, Ali
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • It is usual in design and assessment of structures to isolate the effects of vertical and horizontal excitations by ignoring their coupling effects. In this situation, total structural response is obtained by employing the well-known combination rules whereby independent assumed response components of earthquakes are combined. In fact, the effects of the simultaneity of the ground motion components are ignored. In this paper, the effect of vertical excitation on horizontal response of structures, the coupling of vertical and horizontal responses, has been evaluated. A computer program is prepared to perform nonlinear dynamic analysis based on the derived governing equations of coupled motions. In the case of simultaneous excitation the results show significant increases in spectral displacement in some periods of vibration in comparison to only horizontally excited systems. Moreover, whenever ratio of the vertical peak ground acceleration to horizontal one become larger, the significant increase in horizontal spectral displacements are observed.

An Experimental Study on the Vertical Vibration Transfer according to Shear Wall Building Structures due to Exciting Vibration Forces (전단벽식 건축구조물의 수직진동 전달특성에 관한 실험연구)

  • Chun Ho-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.159-166
    • /
    • 2005
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the characteristics of vertical vibration transfer in terms of the directions of transfer(upward transfer and downward transfer) on the shear wall building structures due to 2 type vibration forces. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structure. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the directions of transfer.

  • PDF

Characteristics of Vertical Vibration Transfer according to RC Structure Systems (RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교)

  • Chun, Ho-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF