• Title/Summary/Keyword: Vertical Profiling

Search Result 32, Processing Time 0.03 seconds

SLODAR System Development for Vertical Atmospheric Disturbance Profiling at Geochang Observatory

  • Ji Yong Joo;Hyeon Seung Ha;Jun Ho Lee;Do Hwan Jung;Young Soo Kim;Timothy Butterley
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.30-37
    • /
    • 2024
  • Implemented at the Geochang Observatory in South Korea, our slope detection and ranging (SLO-DAR) system features a 508 mm Cassegrain telescope (f /7.8), incorporating two Shack-Hartmann wave-front sensors (WFS) for precise measurements of atmospheric phase distortions, particularly from nearby binary or double stars, utilizing an 8 × 8 grid of sampling points. With an ability to reconstruct eight-layer vertical atmospheric profiles, the system quantifies the refractive index structure function (Cn2) through the crossed-beam method. Adaptable in vertical profiling altitude, ranging from a few hundred meters to several kilometers, contingent on the separation angle of binary stars, the system operates in both wide (2.5 to 12.5 arcminute separation angle) and narrow modes (11 to 15 arcsecond separation angle), covering altitudes from 122.3 to 611.5 meters and 6.1 to 8.3 kilometers, respectively. Initial measurements at the Geochang Observatory indicated Cn2 values up to 181.7 meters with a Fried parameter (r0) of 8.4 centimeters in wide mode and up to 7.8 kilometers with an r0 of 8.0 centimeters in narrow mode, suggesting similar seeing conditions to the Bohyun Observatory and aligning with a comparable 2014-2015 seeing profiling campaign in South Korea.

Enhancement of Subgrade Stiffness Profiling by Incorporating Rayleigh and Love Waves into the Common-Array-Profiling(CAP) SASW Technique (레일레이파.러브파의 동시활용과 CAP SASW 기법 적용에 의한 지반 전단강성 평가의 고품질화)

  • Chang, Dae-Woo;Joh, Sung-Ho;Kang, Tae-Ho;Koh, Hak-Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.338-345
    • /
    • 2005
  • Recently, surface-wave methods have been widely used for site investigation due to economic advantage and improved reliability. Specially, the Spectral-Analysis-of-Surface-Wave (SASW) method has been used to evaluate soil properties in geotechnical engineering. In determination of subgrade stiffness by SASW measurements, only the vertical Rayleigh waves have been used. This study proposed a framework to determine shear-wave velocity profiles by using vertical and horizontal Rayleigh waves and Love wave all together. In addition, the Common-Array-Profiling(CAP) SASW method was employed, which subgrade stiffness of profile the local material under two fixed receivers. The procedure proposed in this study was verified by comparing the shear-wave velocity profiles with the shear-wave velocity profiles of downhole testing at two geotechnical sites.

  • PDF

Borehole Seismics: Review and Its Application to Civil Engineering (시추공 탄성파탐사 및 이의 토목공학적 응용)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.176-201
    • /
    • 1999
  • Principles, data acquisition, data processing of four frequently used borehole seismic methods, i.e., downhole seismic, vertical seismic profiling(VSP), crosshole seismic, and seismic tomography, are reviewed briefly. Field data examples are presented and their application to civil engineering area was also discussed.

  • PDF

액화석유가스(LPG) 지하저장기지에서의 TSP(Tunnel Seismic Prediction)탐사

  • Cha, Seong-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.75-86
    • /
    • 2002
  • A TSP(Tunnel Seismic Prediction) survey which is modified VSP(Vertical Seismic Profiling) survey applied in tunnel was carried out at Pyongtaek and Incheon liquefied petroleum gas(LPG) storage cavern during excavation. The TSP survey in Pyongtaek LPG storage cavern which is located below Namyangho was performed to confirm the location and orientation of the fault detected at pre-investigation stage. The TSP survey was carried out in access tunnel, construction tunnel, and watercurtain tunnel to characterize 3 dimensional figure of the fault. The results of TSP survey are compared four in vestigation boreholes drilled in shelter of access tunnel. The fault was also detected by borehole survey and the location was coincided with the result of TSP survey. Depending on the result of TSP survey and core logging, the design such as cavern layout and length was changed. Another TSP survey was performed in Incheon LPG storage cavern which is located below sea. Because of poor geological information at pre-investigation stage and suffering from heavy leakage of groundwater, the TSP survey to detect fracture zone was carried out. The support and grouting design was reflected by the result of TSP survey.

  • PDF

Study on Seabed Mapping using Two Sonar Devices for AUV Application (복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.

A Study on Interpretation of Seismic Reflection Traveltimes in Anisotropic Layers (이방성 지층에서의 탄성파 반사 주시자료의 해석에 관한 연구)

  • Hwang, Se Ho;Yang, Seung Jin;Jang, Seong Hyung;Kim, Jung Yul
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.201-207
    • /
    • 1994
  • This paper presents a technique to determine anisotropic elastic coefficients from traveltimes of seismic reflections or vertical seismic profiling (VSP) in tranversely isotropic layers whose thicknesses are known. The elastic coefficients are calculated from three different velocities (vertical, horizontal and skew velocities) which are determined from skew hyperbolic traveltimes by least-square fitting or semblance analysis. This interpretation technique is tested for synthetic traveltime data obtained for transversely isotropic models. The test shows that the anisotropic elastic constants of the models are determined accurately by this interpretation method.

  • PDF

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

Global Ocean Observation with ARGO Floats : Introduction to ARGO Program (ARGO 플로트를 이용한 전지구 해양관측 : ARGO 프로그램 소개)

  • Lee, Homan;Chang, You-Soon;Kim, Tae-Hee;Kim, Ji-Ho;Youn, Yung-Hoon;Seo, Jang-Won;Seo, Tae-Gun
    • Atmosphere
    • /
    • v.14 no.1
    • /
    • pp.4-23
    • /
    • 2004
  • To monitor the world's oceans and understand the role of the oceans for climate change, an Array for Real-time Geostrophic Oceanography (ARGO) program has been carried out since year 2000. Autonomous profiling floats of about 820 are reporting the vertical temperature, salinity, and pressure profiles of the upper 2000 m underwater at regular time intervals. Meteorological Research Institute (METRI) of Korea Meteorological Administration (KMA) launched 45 floats at the East Sea and the western Pacific to understand characteristics of water properties and develop the global ocean observation system as a part of international cooperation project. In this study, we introduce ARGO program, METRI-ARGO and the features of APEX float itself and their data formats. We also describe the significant points to be considered for using ARGO data.

Shallow Eelectrical Resistivity and VLF Profiling at Sangchon-ri Area along the Southern Par of Yangsan Fault (양산단층 남부 상천리 일대의 천부 전기비저항 및 VLF 탐사)

  • 경재복;한수형;조현주;김지수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • To clarify the geological structure of Yangsan fault around Sangchon-ri in the southern part of Kyungsang Basin the resistivity (dipole-dipole profiling) and VLF surveys carried out on the four profiles, crossing the inferred trace of the fault. The resistivity contrast across the fault is clearly shown on the profiles: higher resistivity and lower resistivity on the east and west, respectively. It is most likely from the uplift of the granitic bedrock on the east park due to the strike-fault raulting with vertical movement. The zero-crossing points of VLF anomalies, associated with near-surface fracture zone, are found to well correlate with the resistivity boundaries from the dipole-dipole profiling. Consequently, southern segment of Yangsan fault (at Sangchon-ri area) is interpreted to be vertically developed strike-slip fault with a difference more than 10m depth of basement rock at both sides.

  • PDF

Calibration of Structured Light Vision System using Multiple Vertical Planes

  • Ha, Jong Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.438-444
    • /
    • 2018
  • Structured light vision system has been widely used in 3D surface profiling. Usually, it is composed of a camera and a laser which projects a line on the target. Calibration is necessary to acquire 3D information using structured light stripe vision system. Conventional calibration algorithms have found the pose of the camera and the equation of the stripe plane of the laser under the same coordinate system of the camera. Therefore, the 3D reconstruction is only possible under the camera frame. In most cases, this is sufficient to fulfill given tasks. However, they require multiple images which are acquired under different poses for calibration. In this paper, we propose a calibration algorithm that could work by using just one shot. Also, proposed algorithm could give 3D reconstruction under both the camera and laser frame. This would be done by using newly designed calibration structure which has multiple vertical planes on the ground plane. The ability to have 3D reconstruction under both the camera and laser frame would give more flexibility for its applications. Also, proposed algorithm gives an improvement in the accuracy of 3D reconstruction.