• Title/Summary/Keyword: Vertical Plates

Search Result 257, Processing Time 0.029 seconds

Finite Element Analysis of the Composite Box Girder (합성상형의 유한요소 해석)

  • 이정기;조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.145-152
    • /
    • 1987
  • This paper suggests a method for the analysis of box girders which are subject to the membrane and the plate bending actions, Moreover, the method is applied to the box girders under distributed loads which have various geometrical types of cross sections and are made out of different materials. The approach is based on the finite element technique in which the structure is considered to be a spatial assemblage of flat plate elements and the deformations of the plates are to be approximated with 9-noded parabolic isoparametric elements. The results are summarized as follows. 1.In all models, the larger the widths of top flange inside of web are, the larger the vertical deflections are. 2.The maximum transverse and longitudinal moments in the composite box girders are judged to be larger than those in the RC box girders. 3.The transverse and the longitudinal moments in top flange of composite box. girders are larger than those in that of the RC box girders. 4.The transverse and longitudinal moments in web and bottom flange of the composite box girders are estimated to be very small in compare to those in web and bottom flange of the RC box girders.

  • PDF

Reshoring effects on deflections of multi-shored flat plate systems under construction

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.455-470
    • /
    • 2013
  • RC flat plates that have no flexural stiffness by boundary beams may be governed by a serviceability as well as a strength condition. A construction sequence and its impact on the distributions of construction loads among slabs tied by shores are decisive factors influencing immediate and long term performances of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction. A reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of construction loads in a multi-shored flat plate system. In this study, a change of construction loads by reshoring works and its effects on deflections of flat plate systems under construction are analyzed. The slab construction loads with various reshoring schemes are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking effects is applied. From parametric studies, the reshoring works are verified to reduce construction loads and slab deflections.

Design and Experimental Implementation of Easily Detachable Permanent Magnet Reluctance Wheel for Wall-Climbing Mobile Robot

  • Kim, Jin-Ho;Park, Se-Myung;Kim, Je-Hoon;Lee, Jae-Yong
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.128-131
    • /
    • 2010
  • In this paper, we propose a new design of the permanent magnet reluctance wheel which will make it possible to attach the robot to a vertical plane and move it. In the newly suggested design, a permanent magnet is utilized to enhance the adhesive force during attachment, and an electromagnet is produced to weaken the magnetic field of the permanent magnet and reduce the adhesive force for easier detachment of wheels from steel plates. To characterize the performance of this new wheel design, a 3-D finite element analysis is executed using a commercial FE program. The results show that the adhesive force is reduced effectively by the electromagnet which flows in the reverse direction of the magnetic loop of the permanent magnet when the current is supplied to the coil.

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

A Study on Real Time Measurement of Frictional Coefficients by using Multi-components Load Cell (다축 힘센서를 이용한 마찰계수 실시간 측정방법 연구)

  • 권현준;권영하;박경희;오택열;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.481-485
    • /
    • 2003
  • This study describes the real-time measurement system which consist of multi-components load cell and linear motor. Operationg and data acquisition is controlled by PC. Multi-components load cell measures simultaneously the vertical force Fz and frictional force Fx when contactors move on sample surface. Linear motor is used to translate with constant speed without vibration. The frictional coefficient is calculated by Matlab$^{TM}$. The frictional coefficients between Al. plates. and fingertip and fabrics are measured.d.

  • PDF

A Study on the Characteristics of Heat Energy Distribution of Fire-Proof Clay with Microwave Heating Drying (MICROWAVE 가열 건조에 의한 내화 점토의 열에너지 분포 특성 연구)

  • Lee, S.J.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.752-757
    • /
    • 2001
  • The characteristics of heat energy distribution on the fire-proof clay with microwave heating drying are numerically investigated using finite element method. The modelled regular hexahedron chamber$(50cm\times50cm\times50cm)$ filled with air consists of vertical heat source and sink walls, a fire-proof clay model, and adiabatic plates on the top and bottom walls. With different geometrical aspect ratios of the fire-proof clay model, the heat energy distribution is throughly investigated. The model gave a good prediction of the microwave heating characteristics of fire-proof clay. The optimal shape of the fire-proof clay for given chamber geometry and microwave power is analyzed.

  • PDF

Numerical Study on the Air-Cushion Glass Transportation Unit for LCD Panels

  • Im Ik-Tae;Jeon Hyun-Joo;Kim Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.27-31
    • /
    • 2006
  • Non-contact transportation system using air cushion for the manufacturing of large-sized LCD panels was considered. Flow characteristics between air pad and glass plate was analyzed using computational fluid dynamics method to obtain optimized air pad configurations. Effects of the design variables such as hole arrays from which gas is injected, gas-feeding method into the gas supplying channels, and horizontal and vertical pitches of clusters of holes were studied. Optimized air pad unit gave evenly distributed pressure contour on the glass surface and well-suspended levitation height in the experiment.

  • PDF

The Experimental Study for Fiber Reinforced Bearing (섬유보강 탄성받침의 실험적 특성 해석)

  • 문병영;강경주;강범수;김계수;박진삼
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.415-422
    • /
    • 2001
  • In this paper, the experimental study was carried out in order to compare the mechanical characteristics of multi-layer elastomeric isolation hearings where the reinforceing elements steel plates case and fiber-reinforcement case. Fiber-reinforced isolater which has the same dimension as the steel reinforced isolator had shown better efficiency in effective damping than NRB. The compression test has shown the corresponding results with the theoretical vertical stiffness in the case of flexible reinforcement. The fiber-reinforced isolator will be significantly lighter and could lead to a much less labor intensive manufacturing process.

  • PDF

Development and Morphology of pelvetia siliquosa Tseng et Chang (Phaeophyta) In Culture

  • Yoon, Jang-Taek;Gong, Young-Gun;Chung, Gyu-Hwa
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2003
  • The present study reports morphology and developmental pattern off siliquosa cultured in a laboratory condition. The zygote was spherical with a diameter of 85 ${\mu}{\textrm}{m}$. During development the polarized zygote divided horizontally and the lower daughter cell divided horizontally into 2 cells. The upper cell was divided repeatedly in horizontal and vertical directions to form a cylinder-like structure, which subsequently developed into secondary and tertiary dichotomous branches. Optimum temperature for zygote release and fertilization was 25C. Injury inflicted by slicing was cured by epidermal differentiation, and adventitious branches; the branches emerging from the pith cells, however, developed no rhizoid. Adventitious branch formation rate was over 88% in all plates supplemented with 0.5 mg/L IAA and peaked at 98% under 0.5 mg/L IAA plus 0.5-5.0 mg/L NAA treatment. NAA stimulated the differentiation of adventitious branches at a wide range of concentrations, while IAA, 2,4-D and kinetin exhibited dose-dependent stimulation.

Optimal Design of High-Speed Railway Bridges Considering Static and Dynamic Constraints (정적 및 동적 제약조건을 고려한 고속철도 교량의 최적화 설계)

  • 안예준;신영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-142
    • /
    • 1999
  • Plate girder bridges for tile Korean high-speed railway are optimally designed. Static and dynamic constraints are all considered. The design variables are the thicknesses and the lengths of the plates that are used to form I-shaped main girders with variable cross-sections. And the objective function is tile steel weight of a main girder. A C++ based design program is developed; this program interfaces with a FORTRAN based optimization program ADS. From the results of optimal design for various span lengths, it is observed that the deck vertical acceleration is one of the most important constraints in a special range of tile span length. Front a parametric study, sensitivity of the optimal design to static as well as dynamic constraints are presented.

  • PDF