• Title/Summary/Keyword: Vertical Multileaf Collimator

Search Result 3, Processing Time 0.015 seconds

Feasibility Study of Vertical Multileaf Collimator for Determination of Irradiation Size (수직형 다엽 콜리메이터의 방사선 조사면 크기 결정을 통한 유용성 연구)

  • Lee, Chang-Yeol;Son, Ki-Hong;Shin, Sang-Hun;Park, Seung-Woo;Lee, Dong-Han;Jung, Hai-Jo;Choi, Mun-Sik;Oh, Won-Young;Kim, Kum-Bae;Yang, Gwang-Mo;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.3-11
    • /
    • 2011
  • The purpose of this study was to evaluate feasibility of Vertical Multileaf Collimator for determination of irradiation size using Vertical Multileaf Collimator and lead block to determine 4 different irradiation shape in case of Co-60 gamma-ray and 6 MV X-ray. We chose ion chamber, glass dosimeter and EBT chromic film to compare with Vertical Multileaf Collimator results and lead block results. In case of Co-60 gamma-ray and 6 MV X-ray, the central axis point dose normalized at reference field of lead block with ion chamber results for Vertical Multileaf Collimator were estimated higher than lead block about 5.1%, 4.2%. In case of Co-60 gamma-ray, the central axis point dose normalized at reference field of lead block with glass dosimeter results for Vertical Multileaf Collimator were estimated higher than lead block about 2.2%, 7.8%, 7.2%, 4.0% for reference, circle, triangle, cross field, respectively. In case of 6 MV X-ray, the central axis point dose normalized at reference field of lead block with glass dosimeter results for Vertical Multileaf Collimator were estimated higher than lead block about 6.7%, 6.2%, 3.8%, 6.2% for reference, circle, triangle, cross field, respectively. The results of EBT chromic film, Vertical Multileaf Collimator of penumbra size for all irradiation shape was smaller than lead block of those size that 2.0~3.5 mm for Co-60 gamma-ray, 0.5~1.0 mm for 6 MV X-ray. The results from this study, radiation treatment volume that results in shielding block can be minimized. In addition, during radiation treatment for 2, 3-dimensional radiation therapy using a Vertical Multileaf Collimator of this survey can be used to determine variety of irradiation fields.

Introduction and feasibility study of the HD-270 MLC (HD-270 MLC의 소개 및 유용성평가)

  • Kim Dae Young;Kim Won Taek;Lee Hwa Jung;Lee Kang Hyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • I. Purpose The multileaf collimator(MLC) has many advantages, but use of the MLC increased effective penumbra and isodose undulation in dose distribution compared with that of an alloy block. In this work, we introduced the HD-270 MLC, which can improve the above disadvantages of MLC, and reported its feasibility study. II. Method and Materials The HD-270 MLC is a technique which combines the use of the existing Siemens multileaf collimator(3D MLC) with patient translation perpendicular to the leaf plane. The technique produces a smoothed isodose distribution with the reduced isodose undulation and effective penumbra. To assess the efficacy of the HD-270 technique and determine the appropriate resolution, a polygonal shaped MLC field was made to produce field edge angles from 0 degree to 75 degree with a step of 15 degree. Each HD-270 group was generated according to the allowed resolution, i. e., 5, 3, and 2mm. The experiment was carried out on Primus, a Siemens linear accelerator configured with HD-270 MLC. The total 60 MU of 6 MV photon beam was delivered to X-Omat film(Kodak, USA) at a SAD of 100 cm and 1.5 cm depth in solid water phantom. Exposed films were scanned by Lumiscan75(LUMISYS) and analyzed using RIT113 software(Radiological Imaging Technology Inc., USA). To test the mechanical accuracy of table movement, the transverse, longitudinal, and vertical positions were controlled by a consol with ${\pm}5\;mm,\;{\pm}4\;mm,\;{\pm}3\;mm,\;and\;{\pm}2\;mm$ steps, and then measured using a dial gauge with an accuracy of 0.001 inch. During the experiments, the table loaded with about 50Kg human phantom to simulate the real treatment situation. III. Results The effective penumbra and isodose undulation became larger with increase the resolution and field edge angle. The accuracy of the table movement on each direction is good within the ${\pm}1\;mm$. IV. Conclusion Clinical use of the MLC can be increased by using of the HD-270 MLC which complements to the disadvantages of the MLC.

  • PDF

Customer Acceptance Procedure for Clinac (21EX-Platinum)

  • Hong, Dong-Ki;Lee, Woo-Seok;Kwon, Kyung-Tae;Park, Kwang-Ho;Kim, Chung-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.43-61
    • /
    • 2004
  • Purpose : For qualify improvement in radiotherapy, it is important to set up and evaluate equipment (linac) accurately. In addition, technicians are needed to be fully aware of the equipment's detailed quality and its manual. Therefore, the result of ATP is evaluated and introduced, in order that the technicians are skilled by participating in quality assurance (QA) and understanding the quality of the equipment before clinical use. Method and Material : QA for LINAC 21EX (Varian, US) was done with suppliers its procedure was divided into radiation survey, mechanical test, radiation isocenter test, bean performance, dosimetry, and enhanced dynamic wedge and using X-omat film (Kodak), multidata, densitometer, and electrometer. QA of MLC (Millennium, 120 leaf) attached to LINAC and EPID (Portal vision) were done separately. Result : The leakage dose by survey meter was below the tolerance. In mechanical test, collimater, gantry, and couch rotation were less than 1mm, and the angles were ${\pm}0.1^{\circ}$ for digital and ${\pm}0.5^{\circ}$ for mechanical. The alignment test of the light field and crosshair were evaluated less than 1mm. The (a)symmetrical jaw field was less than ${\pm}0.5mm$. The radiation isocenter test using X-mat film was less than 1mm. The consistency of light field and radiation field was less than ${\pm}0.1mm$. PDD for photon energy was less than ${\pm}1\%$ and for electron energy of $90\%,\;80\%,\;50\%,\;and\;30\%$ were evaluated within the tolerance. Flatness for photon and electron energy was evaluated $2.3\%$ (tolerance $3\%$) and $3\%$ (tolerance $4.5\%$), respectively, and symmetry was $0.45\%$ (tolerance $2\%$) and $0.3\%$ (tolerance $2\%$), respectively. Dosimetry test for short term, MU setting, rep rate, and dose rate accuracy of photon and electron energy was within the tolerance depending on energy, MU, and gantry angle. Conclusion : Accuracy and safety for clinical use of Clinac 21EX was verified through customer acceptance procedure and the quality of the equipment was found out. These can reduce the difficulties in using the equipment. Furthermore, it is useful for clinically treatment of patients by technicians' active participations.

  • PDF