• Title/Summary/Keyword: Vertical Moving System

Search Result 127, Processing Time 0.026 seconds

Tracking Robot Control of 2D Moving Target by a Robot Vision

  • Kim, Dong-Hwan;Jeon, Byoung-Joon;Hong, Young-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.4-99
    • /
    • 2002
  • A two-dimensional moving target is necessarily captured by a 5 dot robot system using a robot vision technique. Here, a robot vision system with a visual skill so that it can take information for a moving target or object, specially two dimensionally moving, is introduced and its algorithm and control strategy are presented associated with it. The tracking algorithm is proposed and its performance is verified by experiment. The camera first captures the object, then it captures again after certain second. The position difference generates the horizontal and vertical velocities of the moving target, hence the final destination is estimated at gripping line. At the same time, the robot s...

  • PDF

A Novel Fractal-Space Multiplexing using Moving Window and Double-Focusing Lens (움직이는 창과 이중 초점 렌즈를 이용한 프랙탈-공간 다중화 기법)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • We propose a novel fractal-space multiplexing holographic memory system using moving window and double-focusing lens, which can eliminate crosstalk due to two neighboring moving window rows in the vertical direction of the conventional moving window holographic memory system, and demonstrated its feasibility through optical experiments.

Mass Estimation of a Permanent Magnet Linear Synchronous Motor Applied at the Vertical Axis (수직축 선형 영구자석 동기전동기의 질량 추정)

  • Lee, Jin-Woo;Ji, Jun-Keun;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.487-491
    • /
    • 2008
  • Tuning of the speed controller in the linear servo applications needs the accurate information of a mover mass including a load mass. Therefore this paper proposes the mass estimation method of a permanent magnet linear synchronous motor(PMLSM) applied at the vertical axis by using the recursive Least-Squares estimation algorithm. First, this paper derives the deterministic autoregressive moving average(DARMA) model of the mechanical dynamic system used at the vertical axis. The application of the Least-Squares algorithm to the derived DARMA model gives the mass estimation method. Matlab/Simulink-based simulation and experimental results show that the total mover mass of a PMLSM applied at the vertical axis can be accurately estimated at both no-load and load conditions.

Modeling for Distributed Control of Elevator (엘리베이터 분산 제어를 위한 모델링)

  • Lee, Myung-Un;Jung, Soo-Young;Kwon, Wook-Hyun;Choe, Gyu-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1620-1624
    • /
    • 2003
  • Recently, the height of building is more high and the number of moving people is increasing in the building. So we want to be necessary more effective vertical moving tool. Most of high intelligent building can satisfy tills need using many elevators. Many elevators system should need to distribute and distribute many elevator effectively. This paper effectively use many elevators to reduce customer' waiting time and propose the model of mathematical group control system.

  • PDF

Phase change process of the initially subcooled material in a vertical cylinder (초기적으로 과냉각된 수직실린더 내부 물질의 상변화 과정)

  • Baek, Yeong-Ryeol;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 1997
  • Melting process inside in a vertical cylinder has been investigated numerically to observe heat transfer characteristics in the latent heat storage vessel applied to the thermal storage system. The time-dependent boundary fitted coordinate system was introduced to overcome the difficulty caused by the moving boundary. The present results are in good agreement with the available previous data when the initial subcooling effect of the solid phase is not considered. It is found that the melting is promoted by the natural convection, but is delayed by the initial subcooling effect of the solid phase.

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

Research for Improvement of Iterative Precision of the Vertical Multiple Dynamic System (수직다물체시스템의 반복정밀도 향상에 관한 연구)

  • 이수철;박석순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.64-72
    • /
    • 2004
  • An extension of interaction matrix formulation to the problem of system and disturbance identification for a plant that is corrupted by both process and output disturbances is presented. The teaming control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of loaming control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers in a decentralized system, such as a robot moving on the vertical plane with the controller for each link acting independently. The basic result of the paper is to show that stability and iterative precision of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized teaming in the coupled system, provided that the sample time in the digital teaming controller is sufficiently short. The methods of teaming system are shown up for the iterative precision of each link.

Realization for EMG Signal Sensing and Vertical Control System of Robotizing Arm (EMG신호 센싱과 로봇팔의 수직제어시스템 구현)

  • Han, Sang-Il;Ryu, Kwang-Ryol;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.161-164
    • /
    • 2008
  • A realization for EMG signal sensing and vertical control system of robotizing arm is presented in this paper. The system is realized that a fine EMG bio-signals of humans' arm muscle are detected by surface electrode sensor, making a high performance amplifier and filtering, converting analog into digital signal and driving a servomotor for robotizing arm. The system is experimented by monitoring multiple step vertical control angles of robotizing arm corresponding to EMG signals in moving arm muscles. The experimental result are that the vertical control level is measured to around 2 degrees and mean error is 5% approximately.

  • PDF

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.