• Title/Summary/Keyword: Vertical LEDs

Search Result 31, Processing Time 0.024 seconds

Electrode-Evaporation Method of III-nitride Vertical-type Single Chip LEDs

  • Kim, Kyoung Hwa;Ahn, Hyung Soo;Jeon, Injun;Cho, Chae Ryong;Jeon, Hunsoo;Yang, Min;Yi, Sam Nyung;Kim, Suck-Whan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1346-1350
    • /
    • 2018
  • An electrode-evaporation technology on both the top and bottom sides of the bare vertical-type single chip separated from the traditional substrate by cooling, was developed for III-nitride vertical-type single chip LEDs with thick GaN epilayer. The post-process of the cooling step was followed by sorting the bare vertical-type single chip LEDs into the holes in a pocket-type shadow mask for deposition of the electrodes at the top and bottom sides of bare vertical-type single chip LEDs without the traditional substrate for electrode evaporation technology for vertical-type single chip LEDs. The variation in size of the hole between the designed shadow mask and the deposited electrodes owing to the use of the designed pocket-type shadow mask is investigated. Furthermore, the electrical and the optical properties of bare vertical-type single chip LEDs deposited with two different shapes of n-type electrodes using the pocket-type shadow mask are investigated to explore the possibility of the e-beam evaporation method.

The Effects of Size and Array of N-GaN Contacts on Operation Voltage of Padless Vertical Light Emitting Diode (N-GaN 접촉 전극의 크기 및 배열 변화에 따른 패드리스 수직형 발광다이오드의 구동전압의 변화에 관한 연구)

  • Rho, Hokyun;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.19-23
    • /
    • 2014
  • For the application of light-emitting diodes (LEDs) for general illumination, the development of high power LEDs chips became more essential. For these reasons, recently, modified vertical LEDs have been developed to meet various requirements such as better heat dissipation, higher light extraction and less cost of production. In this research, we investigate the effect of Size and Array of N-GaN contact on operation voltage with new structured padless vertical LED. We changed the size and array of N-electrodes and investigated how they affect the operation voltage of LEDs. We simulated the current crowding and expected operation voltage for different N-contact structures with commercial LED simulator. Also, we fabricated the padless vertical LED chips and measured the electrical property. From the simulation, we could know that the larger size and denser array of n-electrodes could make operation voltage decrease. These results are well in accordance with those measured values of real padless vertical LED chips.

Fabrication of AlGaN-based vertical light-emitting diodes

  • Bae, Seon Min;Jeon, Hunsoo;Lee, Gang Seok;Jung, Se-Gyo;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong-Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.75-77
    • /
    • 2012
  • The AlGaN-based vertical light-emitting diodes (LEDs) on thick GaN epilayer were fabricated by a hydride vapor phase epitaxy with multi sliding boat system. The optical and electrical characteristics of AlGaN-based vertical LEDs were evaluated using a scanning electron microscopy, electroluminescence and I-V measurements. The AlGaN-based vertical LEDs structure has hexagonal symmetry, 500 ㎛ in diameter and above 67 ㎛ in growth thickness. At the room-temperature, the broaded strong peak and relatively high intensity peak were gradually measured at 405 nm with increasing injection current. And a forward operator voltage was measured to be about 7.5 V.

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF

Chip Size-Dependent Light Extraction Efficiency for Blue Micro-LEDs (청색 마이크로 LED의 광 추출 효율에 미치는 칩 크기 의존성 연구)

  • Park, Hyun Jung;Cha, Yu-Jung;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 2019
  • Micro-LEDs show lower efficiencies compared to general LEDs having large areas. Simulations were carried out using ray-tracing software to investigate the change in light extraction efficiency and light distribution according to chip-size of blue flip-chip micro-LEDs (FC ${\mu}-LEDs$). After fixing the height of the square FC ${\mu}-LED$ chip at $158{\mu}m$, the length of one side was varied, with dimensions of 2, 5, 10, 30, 50, 100, 300, and $500{\mu}m$. The highest light-extraction efficiency was obtained at $10{\mu}m$, beyond which the efficiency decreased as the chip-size increased. The chip size-dependence of the FC ${\mu}-LEDs$ both without the patterned sapphire substrate, as well as vertical FC ${\mu}-LEDs$, were analyzed.

Electrode Pattern Dependency of Vertical Structured InGaN/GaN Light Emitting Diode (수직형구조 InGaN/GaN 발광다이오드의 전극 패턴 의존성)

  • Yun, Ju-Seon;Hwang, Seong-Min;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.285-286
    • /
    • 2007
  • Current distributions according to electrode patterns in vertical structured InGaN/GaN LED (light emitting diode) were investigated quantitatively by utilizing three dimensional electrical circuit modeling method. The uniformity of the injected current density in the active layer was compared among different electrode patterns. It was found that the current uniformity was greatly dependent on the electrode pattern in vertical InGaN/GaN LEDs.

  • PDF

Applications of Nanowire Transistors for Driving Nanowire LEDs

  • Hamedi-Hagh, Sotoudeh;Park, Dae-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • Operation of liquid crystal displays (LCDs) can be improved by monolithic integration of the pixel transistors with light emitting diodes (LEDs) on a single substrate. Conventional LCDs make use of filters to control the backlighting which reduces the overall efficiency. These LCDs also utilize LEDs in series which impose failure and they require high voltage for operation with a power factor correction. The screen of small hand-held devices can operate from moderate brightness. Therefore, III-V nanowires that are grown along with transistors over Silicon substrates can be utilized. Control of nanowire LEDs with nanowire transistors will significantly lower the cost, increase the efficiency, improve the manufacturing yield and simplify the structure of the small displays that are used in portable devices. The steps to grow nanowires on Silicon substrates are described. The vertical n-type and p-type nanowire transistors with surrounding gate structures are characterized. While biased at 0.5 V, nanowire transistors with minimum radius or channel width have an OFF current which is less than 1pA, an ON current more than 1 ${\mu}A$, a total delay less than 10 ps and a transconductance gain of more than 10 ${\mu}A/V$. The low power and fast switching characteristics of the nanowire transistor make them an ideal choice for the realization of future displays of portable devices with long battery lifetime.

Study on the Electrode Design for an Advanced Structure of Vertical LED (Via-hole 구조의 n-접합을 갖는 수직형 발광 다이오드 전극 설계에 관한 연구)

  • Park, Jun-Beom;Park, Hyung-Jo;Jeong, Tak;Kang, Sung-Ju;Ha, Jun-Seok;Leem, See-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.71-76
    • /
    • 2015
  • Recently, light emitting diodes (LEDs) have been studied to improve their efficiencies for the uses in various fields. Particularly in the aspect of chip structure, via hole type vertical LED chip is developed for improvement of light output power, and heat dissipations. However, current vertical type LEDs have still drawback, which is current concentration around the n-contact holes. In this research, to solve this phenomenon, we introduced isolation layer under n-contact electrodes. With this sub-electrode, even though the active area was decreased by about 2.7% compared with conventional via-hole type vertical LED, we could decrease the forward voltage by 0.2 V and wall-plug efficiency was improved approximately 4.2%. This is owing to uniform current flow through the area of n-contact.

Emitting Properties of Poly(3-hexylthiophene) deposited by LB method (LB법에 의한 제막된 poly(3-hexylthiophene)의 발광특성)

  • Seo, Bu-Wan;Kim, Ju-Seung;Gu, Hal-Bon;Lee, Kyung-Sup;Park, Bok-Gi;Park, Gye-Chun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.962-964
    • /
    • 1999
  • We studied emitting properties of devices fabricated using the spin-coating and Langmuir-Blodgett[LB] technique. The LB technique has the advantage of precise control of the thickness better than spin-coating method. Poly(3-hexylthiophene)[P3HT] LB films used as the emitting layer in light-emitting devices. LB monolayers were deposited 27 layers onto the indium-tin-oxide[ITO] as Y-type films by the vertical dipping method. The thickness is about 80nm. Absorption spectrum of LB films presented that P3HT is regiorandom conformation. Also, current-voltage-luminance characteristics and electroluminescence spectra of light-emitting devices fabricated by LB method is studied. In current-voltage-luminescence characteristics, turn-on voltage of P3HT LB film LEDs is higher than that of spin-coating LEDs. But electroluminescence spectrum is similar to the spin-coating LEDs. The orange-red light was clearly visible in a darkened room.

  • PDF