• Title/Summary/Keyword: Vertical Grid System

Search Result 73, Processing Time 0.025 seconds

Composite Iso-Grid Panel Production and Buckling Test (복합재 Iso-Grid 패널 제작 및 좌굴시험)

  • Yoo Jae-Seok;Kim Kwang-Soo;Jang Young-Soon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.51-55
    • /
    • 2004
  • A composite Iso-grid panel is manufactured and tested by compressive load. Vertical stringers and side stringers are joined with skin by secondary bonding using a liquid type adhesive. Bonding fixtures were developed to attach the stringers to skin. A-scan was done for inspection of secondary bonding region. The out of displacement field is visualized by shadow moire system. The strain and vertical displacement are measured by strain gages and L VDT (Linear Variable Differential Transformer). A local buckling is occurred at all grid sections. After that, the final failure is occurred. The strain of side stringer is much less than that of vertical stringer and skin. Due to the side stringer, the local buckling is delayed. Therefore the ratio of the first buckling to failure load is greater than that of vertical stringer stiffened panel.

  • PDF

Optimization of the Vertical Localization Scale for GPS-RO Data Assimilation within KIAPS-LETKF System (KIAPS 앙상블 자료동화 시스템을 이용한 GPS 차폐자료 연직 국지화 규모 최적화)

  • Jo, Youngsoon;Kang, Ji-Sun;Kwon, Hataek
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.529-541
    • /
    • 2015
  • Korea Institute of Atmospheric Prediction System (KIAPS) has been developing a global numerial prediction model and data assimilation system. We has implemented LETKF (Local Ensemble Transform Kalman Filter, Hunt et al., 2007) data assimilation system to NCAR CAM-SE (National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core, Dennis et al., 2012) that has cubed-sphere grid, known as the same grid system of KIAPS Integrated Model (KIM) now developing. In this study, we have assimilated Global Positioning System Radio Occultation (GPS-RO) bending angle measurements in addition to conventional data within ensemble-based data assimilation system. Before assimilating bending angle data, we performed a vertical unit conversion. The information of vertical localization for GPS-RO data is given by the unit of meter, but the vertical localization method in the LETKF system is based on pressure unit. Therefore, with a clever conversion of the vertical information, we have conducted experiments to search for the best vertical localization scale on GPS-RO data under the Observing System Simulation Experiments (OSSEs). As a result, we found the optimal setting of vertical localization for the GPS-RO bending angle data assimilation. We plan to apply the selected localization strategy to the LETKF system implemented to KIM which is expected to give better analysis of GPS-RO data assimilation due to much higher model top.

An Optimal Structure of a Novel Flat Panel Detector to Reduce Scatter Radiation for Clinical Usage: Performance Evaluation with Various Angle of Incident X-ray (산란선 제거를 위한 신개념 간접 평판형 검출기의 임상적용을 위한 최적 구조 : 입사 X선 각도에 따른 성능평가)

  • Yoon, Yongsu
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.533-542
    • /
    • 2017
  • In diagnostic radiology, the imaging system has been changed from film/screen to digital system. However, the method for removing scatter radiation such as anti-scatter grid has not kept pace with this change. Therefore, authors have devised the indirect flat panel detector (FPD) system with net-like lead in substrate layer which can remove the scattered radiation. In clinical context, there are many radiographic examinations with angulated incident X-ray. However, our proposed FPD has net-like lead foil so the vertical lead foil to the angulate incident X-ray would have bad effect on its performance. In this study, we identified the effect of vertical/horizontal lead foil component on the novel system's performance and improved the structure of novel system for clinical usage with angulated incident X-ray. Grid exposure factor and image contrast were calculated to investigate various structure of novel system using Monte Carlo simulation software when the incident X-ray was tilted ($0^{\circ}$, $15^{\circ}$, and $30^{\circ}$ from the detector plane). More photons were needed to obtain same image quality in the novel system with vertical lead foil only then the system with horizontal lead foil only. An optimal structure of novel system having different heights of its vertical and horizontal lead foil component showed improved performance compared with the novel system in a previous study. Therefore, the novel system will be useful in a clinical context with the angulated incident X-ray if the height and direction of lead foil in the substrate layer are optimized as the condition of conventional radiography.

Considerations on Ionospheric Correction and Integrity Algorithm for Korean SBAS

  • Bang, Eugene;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Satellite Based Augmentation Systems (SBAS) provide ionospheric corrections at geographically five degree-spaced Ionospheric Grid Points (IGPs) and confidence bounds, called Grid Ionospheric Vertical Errors (GIVEs), on the error of those corrections. Since the ionosphere is one of the largest error sources which may threaten the safety of a single frequency Global Navigation Satellite System (GNSS) user, the ionospheric correction and integrity bound algorithm is essential for the development of SBAS. The current single frequency based SBAS, already deployed or being developed, implement the ionospheric correction and error bounding algorithm of the Wide Area Augmentation System (WAAS) developed for use in the United States. However, the ionospheric condition is different for each region and it could greatly degrade the performance of SBAS if its regional characteristics are not properly treated. Therefore, this paper discusses key factors that should be taken into consideration in the development of the ionospheric correction and integrity bound algorithm optimized for the Korean SBAS. The main elements of the conventional GIVE monitor algorithm are firstly reviewed. Then, this paper suggests several areas which should be investigated to improve the availability of the Korean SBAS by decreasing the GIVE value.

Plausible grid size for a real time decision making system based 3D water quality model (실시간 수질관리도구로서의 3차원 수질모형의 최적 격자크기 산정)

  • Ahn, Ki-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.575-583
    • /
    • 2011
  • In this study, the plausible grid size was estimated to increase for efficiency of reservoir management using 3 dimensional water quality model. To validate utilization of a real time water quality management tool, ELCOM-CAEDYM model was applied to Soyang reservoir in korea. 100m grid size can represent the real topography and take out exact analysis results. $400{\times}400m$ grid can be easily used to analysis because of data capacity. Consequently, the grid size of 200m or 300m was recommended to establish 3D model considering the required simulation time and the irrelevance between horizontal grid size and vertical distribution for temperature and turbidity analysis.

Investigation on Performance Characteristics of Dual Vertical Axis Turbine of 100 kW Class Tidal Energy Convertor (100 kW급 조류발전용 듀얼 수직축 터빈의 성능특성 연구)

  • HEO, MAN-WOONG;KIM, DONG-HWAN;PARK, JIN-SOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.151-159
    • /
    • 2020
  • This study aimed to investigate the performance characteristics of vertical axis turbine of tidal energy convertor. Three-dimensional Reynolds-averaged Navier-Stokes equation with shear stress transport turbulence model has been solved to analyze the fluid flow of the vertical axis turbine. The hexahedral grids have been used to construct the computational domain and the grid dependency test has been performed to find the optimum grid system. Four steps have been carried out to design the vertical axis turbine of the 100 kW class tidal energy convertor.

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

EFFECTS OF GRID SPACER WITH MIXING VANE ON ENTRAINMENTS AND DEPOSITIONS IN TWO-PHASE ANNULAR FLOWS

  • KAWAHARA, AKIMARO;SADATOMI, MICHIO;IMAMURA, SHOGO;SHIMOHARAI, YUTA;HIRAKATA, YUDAI;ENDO, MASATO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.389-397
    • /
    • 2015
  • The effects of mixing vanes (MVs) attached to a grid spacer on the characteristics of air-water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV), the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.

Analysis of optimum grid determination of water quality model with 3-D hydrodynamic model using environmental fluid dynamics code (EFDC)

  • Yin, Zhenhao;Seo, Dongil
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • This study analyzes guidelines to select optimum number of grids to represent behavior of a given water system appropriately. The EFDC model was chosen as a 3-D hydrodynamic and water quality model and salt was chosen as a surrogate variable of pollutant. The model is applied to an artificial canal that receives salt water from coastal area and fresh water from a river from respective gate according to previously developed gate operation rule. Grids are subdivided in vertical and horizontal (longitudinal) directions, respectively until no significant changes are found in salinity concentrations. The optimum grid size was determined by comparing errors in average salt concentrations between a test grid systems against the most complicated grid system. MSE (mean squared error) and MAE (mean absolute error) are used to compare errors. The CFL (Courant-Friedrichs-Lewy) number was used to determine the optimum number of grid systems for the study site though it can be used when explicit numerical method is applied only. This study suggests errors seem acceptable when both MSE and MAE are less than unity approximately.

Prediction of Supersonic Jet Impingement on Flat Plate and Its Application (초음속 충돌제트에 대한 수치적 연구와 응용)

  • Lee K. S.;Hong S. K.;Park S. O.;Bae Y. S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.225-228
    • /
    • 2002
  • Supersonic jet impingement on a flat plate has been investigated to show the flow physics for different jet heights and to demonstrate the adequacy of the characteristics-based flux-difference Wavier-Stokes code Current study also compares the steady-state solutions obtained with variable CFL number for different grid spacing with the time-accurate unsteady solutions using the inner iterations, displaying a good agreement between the two sets of numerical solutions. The unsteady nature of wall fluctuations due to bouncing of the plate shock is also uncovered for high pressure ratios. The methodology is then applied to a complex vertical launcher system where the jet plume hits the bottom wail, deflects into the plenum and eventually exits through the vertical uptake. Flow structures within vertical launcher system are captured and solutions are partially verified against the flight test data. Present jet impingement study thus shows the usefulness of CFD in designing a complex structure and predicting flow behavior within such a system.

  • PDF