• 제목/요약/키워드: Vertical Earth Pressure

검색결과 186건 처리시간 0.027초

응력이력이 사질토의 CPT-DMT 상관관계에 미치는 영향 (Effect of Stress History on CPT-DMT Correlations in Granular Soil)

  • 이문주;최성근;김민태;이주형;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.730-739
    • /
    • 2010
  • Stress history increases in penetration resistance due to the increase in residual horizontal stress of granular soil. This study analyzes the effect of stress history on the results of CPT and DMT from calibration chamber specimen in OC as well as NC state. Test results show that the normalized cone resistance by mean effective stress correlates well with the relative density and the state parameter, whereas the normalized cone resistance with regard to vertical effective stress is a little affected by stress history. The horizontal stress index($K_D$) in DMT more reflects the influence of stress history on granular soil than the dilatometer modulus($E_D$) and cone resistance($q_c$). The $K_D/K_0$, in which the effect of stress history on $K_D$ is compensated by the at-rest coefficient of earth pressure, $K_0$, is related to relative density, state parameter and the normalized cone resistance by mean effective stress. It is also observed that the normalized dilatometer modulus by mean effective stress($E_D/{\sigma_m}'$) is unique correlated with the state parameter, regardless of stress history.

  • PDF

한반도 태풍영향 전·중·후 시기동안 오존농도 변화에 관한 기상특성 분석 (Meteorological Characteristics related to the Variation in Ozone Concentrations before, during, and after the Typhoon Period in the Korean Peninsula)

  • 신현진;송상근
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.621-638
    • /
    • 2017
  • Meteorological characteristics related to variations in ozone ($O_3$) concentrations in the Korean peninsula before, during, and after Typhoon Talas (1112) were analyzed using both observation data and numerical modeling. This case study takes into account a high $O_3$ episode (e.g., a daily maximum of ${\geq}90ppb$) without rainfall. Before the typhoon period, high $O_3$ concentrations in the study areas (e.g., Daejeon, Daegu, and Busan) resulted from the combined effects of stable atmospheric conditions with high temperature under a migratory anticyclone (including subsiding air), and wind convergence due to a change in direction caused by the typhoon. The $O_3$ concentrations during the typhoon period decreased around the study area due to very weak photochemical activity under increased cloud cover and active vertical dispersion under a low pressure system. However, the maximum $O_3$ concentrations during this period were somewhat high (similar to those in the normal period extraneous to the typhoon), possibly because of the relatively slow photochemical loss of $O_3$ by a $H_2O+O(^1D)$ reaction resulting from the low air temperature and low relative humidity. The lowest $O_3$ concentrations during the typhoon period were relatively high compared to the period before and after the typhoon, mainly due to the transport effect resulting from the strong nocturnal winds caused by the typhoon. In addition, the $O_3$ increase observed at night in Daegu and Busan was primarily caused by local wind conditions (e.g., mountain winds) and atmospheric stagnation in the wind convergence zone around inland mountains and valleys.

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • 한국지반공학회논문집
    • /
    • 제15권3호
    • /
    • pp.113-129
    • /
    • 1999
  • 본 연구에서는 사질토 지반에서의 굴착단계별 연성 벽체의 거동분석을 수행하기 위해 흙막이벽의 모형실험을 실시하였다. 모형 흙막이벽 실험에서는 재료의 역학적 특성이 비교적 널리 알려진 주문진 표준사를 이용하여 상대밀도가 79%, 41%, 24%인 모형지반을 조성한 후 모형벽체의 연성지수를 변화시켜 각 굴착단계별로 배면지반과 연성 벽체의 거동특성을 규명하였다. 본 연구에서는 벽체의 수평변위, 벽체의 배면에 작용하는 수평토압, 굴착으로 인한 배면지반의 침하량 및 침하영향거리, 벽체에 작용하는 앵커의 하중, 그리고 벽체에 작용하는 휨모멘트와 축력에 대해 굴착단계에 따라 살펴보고 이를 토대로 지반과 벽체의 거동특성을 분석하였다.

  • PDF

불연속면이 존재하는 지반에서 터널굴착에 의한 하중전이 (Load-transfer mechanism in the ground with discontinuity planes during tunnel excavation)

  • 이상덕;변광욱;유건선
    • 한국터널지하공간학회 논문집
    • /
    • 제4권1호
    • /
    • pp.71-78
    • /
    • 2002
  • 본 연구에서는 지반내에 뚜렷한 불연속면의 존재로 인한 하중의 비대칭 전이특성과 이완영역의 형상을 실내실험에 기초하여 고찰하였다. 가동판(trap-door)과 바닥판(reaction plates)을 토조바닥에 설치하고, 건조한 모래지반에 연직의 불연속면을 설치하여 불연속성 지반을 형성하였다. 다양한 토피고와 불연속면의 위치를 실험변수로 적용하였다. 연구결과, 토층비(=토피고/가동판의 폭)가 1.5 이상이 되면, 토압비(전이응력/초기지반응력)는 일정한 값에 수렴되는 것으로 나타났다. 불연속면이 터널 폭 내에 위치하면 불연속면의 영향이 상대적으로 커져서 비대칭성 하중집중이 두드러지게 나타났으며, 터널폭 외부에 존재하면 비대칭성 하중집중이 상당히 감소하는 것으로 타나났다.

  • PDF

바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향 (Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake)

  • 정세웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

시그모이드 함수를 이용한 다중 계측데이터 모니터링 시스템 (Multimetric Measurement Data Monitoring System Using Sigmoid Function)

  • 송정호;신준우;한희수
    • 지질공학
    • /
    • 제33권1호
    • /
    • pp.137-149
    • /
    • 2023
  • 구조물에 작용하는 토압의 방향과 장기변위상태변화를 직관적으로 파악하기 위해 수평, 수직방향의 변위 데이터를 시그모이드 함수를 이용하여 가공하고 각각 좌표계의 한 축으로 하여 변위좌표계 시스템을 설정하였다. 이러한 변위좌표계에 변위상태(압축 또는 팽창) 구분영역과 관리단계 구분영역 설정하여 각 계측지점의 변위상태와 관리단계를 직관적으로 확인할 수 있었다. 관측점을 연속적으로 나타내어 변위경로를 나타내었으며, 변위경로를 통해 변위이력, 변위추세, 지반에 작용하는 응력방향 등을 알 수 있었다. 흙막이 가시설의 실계측데이터 분석 결과 모든 계측지점에서 응력해방 방향으로 변위가 일어났으며, 정상관리상태에 위치하였다. 또한 공간적 상관성이 높은 계측지점 간 거동은 비슷한 거동추세를 보였으며, 공간적 상관성이 낮은 계측지점 간에는 상이한 거동 추세를 보였다. 공간적으로 연속되어 분포하는 지표침하데이터를 변위좌표계를 이용하여 전조현상과 거동영역에 대한 상관성 분석을 수행하면 파괴시간, 영역 예측이 가능 할 것으로 판단된다.

Petrographic Study of Mn-bearing Gondite (Birimian) of Téra Area in the Leo-Man Shield (West African Craton) in Niger.

  • Hamidou GARBA SALEY;Moussa KONATE;Olugbenga Akindeji OKUNLOLA
    • 자원환경지질
    • /
    • 제57권1호
    • /
    • pp.25-39
    • /
    • 2024
  • The Téra manganese deposit represents the most significant manganese mineralization discovered in Niger up today. The main host rocks of this ore are gondites, which are a garnet and quartz rich metamorphic rocks. The supergene weathering developed an alteration profile on these gondites. This study aims to identify the mineralogical composition of gondites and associated rocks, in order to highlight the origine of rocks and the manganese enrichment. The methodological approach adopted involved a field study followed by polarizing microscopic analysis using transmitted and reflected lights. Additionally, quantitative X-ray diffraction (XRD) analysis was performed to assess the manganese ore minerals present in the gondite and associated rocks, including mica schists, amphibolites, and quartzites. The petrographic study revealed a paragenesis characterized by the presence of kyanite, staurolites, garnets and plagioclases that are generally poikiloblasts with quartz and opaque minerals inclusions, emphasizing the internal schistosity which is planar, helicitic or microfolded. These features indicate a prograde metamorphism until high-pressure amphibolite facies conditions. These conditions are followed by greenschist facies conditions marked by calcite, epidote, muscovite, chlorite and muscovite assemblage which emphasizes the vertical tectonics. Depending on the alteration process, the manganese ore exhibit a granular texture at the bottom of the gondite hills, transitioning to a colloform texture towards the top, passing through the epigenization and replacement texture. The XRD analysis further revealed that the studied rocks originated from a volcano-sedimentary complex, characterized by alternating marly, arenaceous and pelitic sequences associated with submarine exhalations.

마그마관입에 의한 상부퇴적층의 변형에 관한연구 (A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion)

  • 민경덕;김원영
    • 자원환경지질
    • /
    • 제10권1호
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구 (A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type)

  • 신현영;김병일;김경오;한상재
    • 한국지반공학회논문집
    • /
    • 제30권4호
    • /
    • pp.5-19
    • /
    • 2014
  • 본 논문에서는 천층블록/심층말뚝 혼합식 시멘트혼합처리 공법을 구조체적 관점에서 해석하였고, 각 방법별 특징 및 관련 거동을 분석하였다. 연속보 해석법의 경우 침하량을 매우 작게 예측하였고, 천층블록의 전단력과 휨응력은 다소 크게 예측하였다. Frame 해석법의 경우 천층블록의 부재력과 장주의 부재력은 수치해석법과 가장 근접한 거동을 예측하였지만, 장주의 침하는 작게 예측하여, 장주 반력을 이용한 별도 침하계산을 실시해야하는 것으로 나타났다. 지반아칭법과 말뚝지지전면기초해석법의 경우 장주의 하중분담율이 타방법에 비해 매우 커서 장주의 축력이 과대 예측되었다. 천층블록/심층말뚝 혼합식 시멘트혼합처리공법을 적용하면, 천층블록의 침하 및 지반반력은 중앙에서 가장 크고, 외곽에서 가장 작았다. 또한, 개량체와 지반간의 상호작용을 고려할 수 있는 해석법에서 장주 개량체가 분담하는 하중은 약 20~45% 범위를 보였고, 응력분담비는 일반적인 말뚝식 DCM 공법보다 작은 약 2.0~5.0정도의 범위를 나타내었다. 장주 두부 경계조건에 따라 최대 부재력에서는 유사하지만, 두부 구속조건에서는 장주의 위치에 따라 축력 및 연직변위는 서로 다르게 나타났다.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF